30 Đề thi học sinh giỏi Toán Khối 7
Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật
chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với
vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên
bốn cạnh là 59 giây
Bài 5: (4 điểm) Cho tam giác ABC cân tại A có A = 200 , vẽ tam giác đều DBC (D nằm
trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
a) Tia AD là phân giác của góc BAC
b) AM = BC
Bạn đang xem 20 trang mẫu của tài liệu "30 Đề thi học sinh giỏi Toán Khối 7", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- 30_de_thi_hoc_sinh_gioi_toan_khoi_7.pdf
Nội dung text: 30 Đề thi học sinh giỏi Toán Khối 7
- §Ò 1 C©u 1. Víi mäi sè tù nhiªn n ≥ 2 h y so s¸nh: 1 1 1 1 a. A= + + + + víi 1 . 223 24 2n 2 1 1 1 1 b. B = + + + + víi 1/2 224 26 2 ()2n 2 3 4 n +1 C©u 2: T×m phÇn nguyªn cña α , víi α =2 +3 +4 + + n+1 2 3 n C©u 3: T×m tØ lÖ 3 c¹nh cña mét tam gi¸c, biÕt r»ng céng lÇn l−ît ®é d i hai ®−êng cao cña tam gi¸c ®ã th× tØ lÖ c¸c kÕt qu¶ l 5: 7 : 8. C©u 4: Cho gãc xoy , trªn hai c¹nh ox v oy lÇn l−ît lÊy c¸c ®iÓm A v B ®Ó cho AB cã ®é d i nhá nhÊt. C©u 5: Chøng minh r»ng nÕu a, b, c v a+ b + c l c¸c sè h÷u tØ. §Ò 2: Môn: Toán 7 Bài 1: (3 điểm): Tính 1 1 2 2 3 18− (0,06:7 + 3 .0,38) : 19 − 2 .4 6 2 5 3 4 Bài 2: (4 điểm): Cho a= c chứng minh rằng: c b 2+ 2 2− 2 − a) a c= a b) b a= b a b2+ c 2 b a2+ c 2 a Bài 3:(4 điểm) Tìm x biết: 1 15 3 6 1 a) x + −4 = − 2 b) −x + = x − 5 12 7 5 2 Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Bài 5: (4 điểm) Cho tam giác ABC cân tại A có A = 200 , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: a) Tia AD là phân giác của góc BAC b) AM = BC 1
- Bài 6: (2 điểm): Tìm x, y ∈ ℕ biết: 25−y2 = 8( x − 2009) 2 §Ò 3 Bài 1:(4 điểm) a) Thực hiện phép tính: 12 5− 6 2 10 3 − 5 2 =2.3 4.9 − 5.7 25.49 A 6 3 ()22 .3+ 8 4 .3 5 ()125.7+ 59 .14 3 b) Chứng minh rằng : Với mọi số nguyên dương n thì : 3n+2− 2 n + 2 + 3 n − 2 n chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: 1 4 2 a. x − + =() −3,2 + 3 5 5 x+1 x + 11 b. ()()x−7 − x − 7 = 0 Bài 3: (4 điểm) 2 3 1 a) Số A được chia thành 3 số tỉ lệ theo :: . Biết rằng tổng các bình phương của 5 4 6 ba số đó bằng 24309. Tìm số A. 2+ 2 b) Cho a= c . Chứng minh rằng: a c= a c b b2+ c 2 b Bài 4: (4 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH⊥ BC ()H∈ BC . Biết HBE = 50o ; MEB =25o . Tính HEM và BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có A = 200 , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: c) Tia AD là phân giác của góc BAC d) AM=BC §Ò 4 B i 1: (2 ®iÓm) 2
- Cho A = 2 5+8 11+14 17+ +98 101 a, ViÕt d¹ng tæng qu¸t d¹ng thø n cña A b, TÝnh A B i 2: ( 3 ®iÓm) T×m x,y,z trong c¸c trêng hîp sau: a, 2x = 3y =5z v x− 2 y =5 b, 5x = 2y, 2x = 3z v xy = 90. + + + + + − c, y z1= x z 2 = x y 3 = 1 x y z x+ y + z B i 3: ( 1 ®iÓm) a a a a a 1= 2 =3 = = 8 = 9 1. Cho v (a1+a2+ +a9 ≠0) a2 a 3 a 4 a 9 a 1 Chøng minh: a1 = a2 = a3= = a9 + + − + 2. Cho tØ lÖ thøc: a b c= a b c v b ≠ 0 a+ b − c a − b − c Chøng minh c = 0 B i 4: ( 2 ®iÓm) Cho 5 sè nguyªn a1, a2, a3, a4, a5. Gäi b1, b2, b3, b4, b5 l ho¸n vÞ cña 5 sè ® cho. Chøng minh r»ng tÝch (a1 b1).(a2 b2).(a3 b3).(a4 b4).(a5 b5) ⋮ 2 B i 5: ( 2 ®iÓm) Cho ®o¹n th¼ng AB v O l trung ®iÓm cña ®o¹n th¼ng ®ã. Trªn hai nöa mÆt ph¼ng ®èi nhau qua AB, kÎ hai tia Ax v By song song víi nhau. Trªn tia Ax lÊy hai ®iÓm D v F sao cho AC = BD v AE = BF. Chøng minh r»ng : ED = CF. === HÕt=== §Ò 5 B i 1: (3 ®iÓm) 1 4,5: 47,375− 26 − 18.0,75 .2,4 : 0,88 3 1. Thùc hiÖn phÐp tÝnh: 2 5 17,81:1,37− 23 :1 3 6 3
- 2. T×m c¸c gi¸ trÞ cña x v y tho¶ m n: 2x− 272007 +() 3 y + 10 2008 = 0 3. T×m c¸c sè a, b sao cho 2007ab l b×nh ph−¬ng cña sè tù nhiªn. B i 2: ( 2 ®iÓm) − − − 1. T×m x,y,z biÕt: x1= y 2 = z 3 v x 2y+3z = 10 2 3 4 2. Cho bèn sè a,b,c,d kh¸c 0 v tho¶ m n: b2 = ac; c2 = bd; b3 + c3 + d3 ≠ 0 3+ 3 + 3 Chøng minh r»ng: a b c= a b3+ c 3 + d 3 d B i 3: ( 2 ®iÓm) 1 1 1 1 1. Chøng minh r»ng: + + + + > 10 1 2 3 100 2. T×m x,y ®Ó C = 18 2x− 6 − 3 y + 9 ®¹t gi¸ trÞ lín nhÊt. B i 4: ( 3 ®iÓm) Cho tam gi¸c ABC vu«ng c©n t¹i A cã trung tuyÕn AM. E l ®iÓm thuéc c¹nh BC. KÎ BH, CK vu«ng gãc víi AE (H, K thuéc AE). 1, Chøng minh: BH = AK 2, Cho biÕt MHK l tam gi¸c g×? T¹i sao? === HÕt=== §Ò sè 6 C©u 1: T×m c¸c sè a,b,c biÕt r»ng: ab =c ;bc= 4a; ac=9b C©u 2: T×m sè nguyªn x tho¶ m n: a,5x 3 4 c, 4 x +2x =3 C©u3: T×m gi¸ trÞ nhá nhÊt cña biÓu thøc: A =x +8 x C©u 4: BiÕt r»ng :12+22+33+ +102= 385. TÝnh tæng : S= 22+ 42+ +202 C©u 5 : 4
- Cho tam gi¸c ABC ,trung tuyÕn AM .Gäi I l trung ®iÓm cña ®o¹n th¼ng AM, BI c¾t c¹nh AC t¹i D. a. Chøng minh AC=3 AD b. Chøng minh ID =1/4BD HÕt §Ò sè 7 Thêi gian l m b i: 120 phót 3 a b c a+ b + c a C©u 1 . ( 2®) Cho: = = . Chøng minh: = . b c d b+ c + d d a c b C©u 2. (1®). T×m A biÕt r»ng: A = = = . b+ c a+ b c+ a C©u 3. (2®). T×m x∈ Z ®Ó A∈ Z v t×m gi¸ trÞ ®ã. x + 3 1− 2x a). A = . b). A = . x − 2 x + 3 C©u 4. (2®). T×m x, biÕt: a) x − 3 = 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 C©u 5. (3®). Cho ABC vu«ng c©n t¹i A, trung tuyÕn AM . E ∈ BC, BH⊥ AE, CK ⊥ AE, (H,K ∈ AE). Chøng minh MHK vu«ng c©n. HÕt §Ò sè 8 Thêi gian l m b i : 120 phót. C©u 1 : ( 3 ®iÓm). 1. Ba ®−êng cao cña tam gi¸c ABC cã ®é d i l 4,12 ,a . BiÕt r»ng a l mét sè tù nhiªn. T×m a ? a c 2. Chøng minh r»ng tõ tØ lÖ thøc = ( a,b,c ,d≠ 0, a≠b, c≠d) ta suy ra ®−îc c¸c b d tØ lÖ thøc: a c a+ b c+ d a) = . b) = . a− b c− d b d C©u 2: ( 1 ®iÓm). T×m sè nguyªn x sao cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < 0. C©u 3: (2 ®iÓm). T×m gi¸ trÞ nhá nhÊt cña: A = | x a| + | x b| + |x c| + | x d| víi a<b<c<d. C©u 4: ( 2 ®iÓm). Cho h×nh vÏ. a, BiÕt Ax // Cy. so s¸nh gãc ABC víi gãc A+ gãc C. b, gãc ABC = gãc A + gãc C. Chøng minh Ax // Cy. x A viB 5
- c3. 0,(21) = 21 = 7 ; c4. 5,1(6) = 5 1 (0.5®) 99 33 6 C©u 2: (2®) Gäi khèi l−îng cña 3 khèi 7, 8, 9 lÇn l−ît l a, b, c (m3) ⇒ a + b + c = 912 m3. (0.5®) a b c ⇒ Sè häc sinh cña 3 khèi l : ; ; 2,1 4,1 6,1 Theo ®Ò ra ta cã: b= a v b= c (0.5®) 3.4,1 1,2 4.1,4 5.1,6 a b c ⇒ = = = 20 (0.5®) 4.1,2 12.1,4 15.1,6 VËy a = 96 m3 ; b = 336 m3 ; c = 480 m3. Nªn sè HS c¸c khèi 7, 8, 9 lÇn l−ît l : 80 hs, 240 hs, 300 hs. (0.5®) C©u 3: ( 1.5®): a.T×m max A. 3 Ta cã: (x + 2)2 ≥ 0 ⇒ (x = 2)2 + 4 ≥ 4 ⇒ A = khi x = 2 (0.75®) max 4 b.T×m min B. Do (x – 1)2 ≥ 0 ; (y + 3)2 ≥ 0 ⇒ B ≥ 1 VËy Bmin= 1 khi x = 1 v y = 3 (0.75®) ∆ C©u 4: (2.5®) KÎ CH c¾t MB t¹i E. Ta cã EAB c©n C t¹i E ⇒ ∠EAB =300 ⇒ ∠EAM = 200 ⇒ ∠CEA = ∠MAE = 200 (0.5®) Do ∠ACB = 800 ⇒ ∠ACE = 400 ⇒ ∠AEC = 1200 ( E 1 ) (0.5®) M 0 MÆt kh¸c: ∠EBC = 200 v ∠EBC = 400 ⇒ ∠CEB = 100 30 A H B 1200 ( 2 ) (0.5®) Tõ ( 1 ) v ( 2 ) ⇒ ∠AEM = 1200 Do ∆EAC = ∆EAM (g.c.g) ⇒ AC = AM ⇒ ∆MAC c©n t¹i A (0.5®) V ∠CAM = 400 ⇒ ∠AMC = 700. (0.5®) C©u 5: (1.5®) Gi¶ sö a2 v a + b kh«ng nguyªn tè cïng nhau ⇒ a2 v a + b Cïng chia hÕt cho sè nguyªn tè d: ⇒ a2 chia hÕt cho d ⇒ a chia hÕt cho d v a + b chia hÕt cho d ⇒ b chia hÕta cho d (0.5®) ⇒ (a,b) = d ⇒ tr¸i víi gi¶ thiÕt. VËy (a2,a + b) =1. (0.5®) §Ò 23 47
- C©u I : 1) X¸c ®Þnh a, b ,c a−1 b+ 3 c − 5 5(a− 1) −3( b + 3) −4( c − 5) 5 a− 3 b − 4 c − 5 − 9 + 20 = = = = = = = −2 2 4 6 10 −12 − 24 10− 12 − 24 => a = 3 ; b = 11; c = 7. − + − C¸ch 2 : a1 = b3 = c 5 = t ; sau ®ã rót a, b ,c thay v o t×m t = 2 t×m a,b,c. 2 4 6 2) Chøng minh §Æt a = c = k => a= kb ; c = kd Thay v o c¸c biÓu thøc : b d 2a2− 3 ab + 5 b 2 2c2− 3 cd + 5 d 2 k2−3 k + 5 k 2 −3 k + 5 − = − = 0 => ®pcm. 2b2 + 3 ab 2d2 + 3 cd 2+ 3k 2+ 3k C©u II: TÝnh: 1 1 1 1 1 1 1 1 1 1 1 32 16 1) Ta cã :2A= 2( + + + ) = − + − + + − = − = =>A = 5.3 7.5 97.99 3 5 5 7 97 99 3 99 99 99 1 1 1 1 1 1 1 1 1 1 2) B = = − + − + + − = + + + + + 3 323 33 503 51 (− 3) (− 32 ) (− 3 3 ) (− 3 50 ) (− 3 51 ) 1 1 1 1 1 1 1 1 −351 − 1 (− 351 − 1) + + + + => B = − = => B = (− 32 ) (− 3 3 ) (− 3) 4(− 3 51 ) (− 3 52 ) − 3 − 3 (− 352 ) 352 3.4 51 C©u III 2 1 2 3 1 7 Ta cã : 0.2(3) = 0.2 + 0.0(3) = + . 0,(1).3 = + . = 10 10 10 10 9 30 1 1 12 32 1 0,120(32) = 0,12 + 0,000(32) =0,12+ .0,(32)= 0,12+ .0,(01).32 = + . 1000 1000 100 1000 99 = 1489 12375 C©u IV : Gäi ®a thøc bËc hai l : P(x) = ax(x 1)(x 2) + bx(x 1)+c(x 3) + d P(0) = 10 => 3c+d =10 (1) P(1) = 12 => 2c+d =12 =>d =12+2c thay v o (1) ta cã 3c+12+2c =10 =>c=2 , d =16 P(2)= 4 => 2b 2+16 = 4 > b= 5 P(3) = 1 => 6a 30 +16 =1 => a = 5 2 5 VËy ®a thøc cÇn t×m l : P(x) = x( x−1 )( x − 2 ) − 5 x ( x − 1 ) + 2 ( x − 3 ) + 16 2 5 25 => P(x) = x 3 x2 +12 x + 10 2 2 C©u V: a) DÔ thÊy ∆ ADC = ∆ ABE ( c g c) => DC =BE . V× AE ⊥ AC; AD ⊥ AB mÆt kh¸c gãc ADC = gãc ABE 48 m tra
- => DC ⊥ Víi BE. b) Ta cã MN // DC v MP // BE => MN ⊥ MP MN = 1 DC = 1 BE =MP; 2 2 VËy ∆ MNP vu«ng c©n t¹i M. §¸p ¸n ®Ò 24 B i 1: 3− 3 + 3 + 3 3 + 3 − 3 a) A = 8 10 11 12+ 2 3 4 (0,25®) −5 + 5 − 5 − 5 5 + 5 − 5 8 10 11 12 2 3 4 1 1 1 1 1 1 1 3− + + 3 + − A = 8 10 11 12 + 2 3 4 (0,25®) 1 1 1 1 1 1 1 −5 − + + 5 + − 8 10 11 12 2 3 4 − A = 3 + 3 = 0 (0,25®) 5 5 102 − b) 4B = 22 + 24 + + 2102 (0,25®) 3B = 2102 – 1; B = 2 1 (0,25®) 3 B i 2: a) Ta cã 430 = 230.415 (0,25®) 3.2410 = 230.311 (0,25®) m 415 > 311 ⇒ 430 > 311 ⇒ 230 + 330 + 430 > 3.2410 (0,25®) b) 4 = 36 > 29 33 > 14 (0,25®) ⇒ 36 + 33 > 29 + 14 (0,25®) B i 3: Gäi x1, x2 x3 lÇn l−ît l sè ng y l m viÖc cña 3 m¸y x x x ⇒ 1= 2 = 3 (1) (0,25®) 3 4 5 Gäi y1, y2, y3 lÇn l−ît l sè giê l m viÖc cña c¸c m¸y y y y ⇒ 1= 2 = 3 (2) (0,25®) 6 7 8 Gäi z1, z2, z3 lÇn l−ît l c«ng suÊt cña 3 m¸y z z z ⇒ 5z = 4z = 3z ⇔ 1= 2 = 3 (3) (0,25®) 1 2 3 1 1 1 5 4 3 M x1y1z1 + x2y2z2 + x3y3z3 = 359 (3) (0,25®) 49
- x y z x y z x y z 395 Tõ (1) (2) (3) ⇒ 1 1 1= 2 2 2 = 3 3 3 = = 15 (0,5®) 187 40 395 5 3 15 ⇒ x1y1z1 = 54; x2y2z2 = 105; x3y3z3 = 200 (0,25®) VËy sè thãc mçi ®éi lÇn l−ît l 54, 105, 200 (0,25®) B i 4: a) EAB = CAD (c.g.c) (0,5®) ⇒ ABM = ADM (1) (0,25®) Ta cã BMC= MBD + BDM (gãc ngo i tam gi¸c) (0,25®) 0 0 0 ⇒ BMC= MBA +60 + BDM = ADM + BDM + 60 = 120 (0,25®) E b) Trªn DM lÊy F sao cho MF = MB (0,5®) A ⇒ FBM ®Òu (0,25®) D ⇒ DFB AMB (c.g.c) (0,25®) F ⇒ DFB = AMB = 1200 (0,5®) B i 6: Ta cã M 1 x= 2⇒ f (2)+ 3. f ( ) = 4 (0,25®) 2 B C 1 1 1 x= ⇒ f( )+ 3. f (2) = (0,25®) 2 2 4 47 ⇒ f (2) = (0,5®) 32 ®¸p ¸n ®Ò 25 C©u 1 a.NÕu x ≥ 0 suy ra x = 1 (tho m n) NÕu < 0 suy ra x = 3 (tho m n) 1 x1 x − 3 y =1 y = −1 y = 2 b. = − = ⇒ ; hoÆc ;hoÆc y 6 2 6 x −3 = 6 x −3 = − 6 x −3 = 3 y = −3 y = 6 y = −6 hoÆc ;hoÆc ; hoÆc x −3 = − 2 x −3 = 1 x −3 = − 1 y = −2 y = 3 hoÆc ; hoÆc x −3 = − 3 x −3 = 2 Tõ ®ã ta cã c¸c cÆp sè (x,y) l (9,1); ( 3, 1) ; (6, 2) ; (0, 2) ; (5, 3) ; (1, 3) ; (4, 6); (2, 6) x y z3 x 7 y 5 z 3 x− 7 y + 5 z 30 c. Tõ 2x = 3y v 5x = 7z biÕn ®æi vÒ = = ⇒ = = = = = 2 21 14 10 61 89 50 63− 89 + 50 15 x = 42; y = 28; z = 20 C©u 2 50
- a. A l tÝch cña 99 sè ©m do ®ã 1 1 1 1 1.32.45.3 99.101 − = − − − − = i i iii A 1 1 1 1 2 2 2 2 2 4 9 16 100 234 100 1.2.3.2 98.99 3.4.5 99.100.101 101 1 1 =i = > ⇒ A 900 gãc AIB 900 d. NÕu AC vu«ng gãc víi DC th× AB vu«ng gãc víi AC do vËy tam gi¸c ABC vu«ng t¹i A C©u 5. 4−x + 10 10 10 P = =1 + P lín nhÊt khi lín nhÊt 4−x 4 − x 4 − x XÐt x > 4 th× 10 0 4 − x 10 lín nhÊt 4 – x l sè nguyªn d−¬ng nhá nhÊt 4 − x 4 – x = 1 x = 3 khi ®ã 10 = 10 P = 11. 4 − x lín nhÊt 51
- H−íng dÉn chÊm ®Ò 26 B i 1 : a) T×m x . Ta cã 2x − 6 + 5x =9 2x − 6 = 9 5x 15 * 2x –6 ≥ 0 ⇔ x ≥ 3 khi ®ã 2x –6 = 9 5x ⇒ x = kh«ng tho m n. (0,5) 7 * 2x – 6 1 . §Ó A = 5 tøc l =5 ⇔x = ⇔ x = . (1) x −1 2 4 B i 4 : E thuéc ph©n gi¸c cña ABC nªn EN = EC ( tÝnh chÊt ph©n gi¸c) suy ra : tam gi¸c NEC c©n v ENC = ECN (1) . D thuéc ph©n gi¸c cña gãc CAB nªn DC = DM (tÝnh chÊt ph©n gi¸c ) suy ra tam gi¸c MDC c©n . v DMC =DCM ,(2) . Ta l¹i cã MDB = DCM +DMC (gãc ngo i cña ∆CDM ) = 2DCM. 52
- T−¬ng tù ta l¹i cã AEN = 2ECN . M AEN = ABC (gãc cã c¹nh t−¬ng øng vu«ng gãc cïng nhän). MDB = CAB (gãc cã c¹nh t−¬ng øng vu«ng gãc cïng nhän ). Tam gi¸c vu«ng ABC cã ACB = 900 , CAB + CBA = 900 , suy ra CAB = ABC = AEN + MDB = 2 ( ECN + MCD ) suy ra ECN + MCD = 450 . VËy MCN = 900 –450 =450 . (1,5) B i 5 : Ta cã P = x2 –8x + 5 = x2 –8x –16 +21 = ( x2 +8x + 16) + 21 = ( x+ 4)2 + 21; (0,75) Do –( x+ 4)2 ≤ 0 víi mäi x nªn –( x +4)2 +21 ≤ 21 víi mäi x . DÊu (=) x¶y ra khi x = 4 Khi ®ã P cã gi¸ trÞ lín nhÊt l 21. h−íng dÉn ®Ò 27 C©u 1: (3®) b/ 2 1.2n + 4.2n = 9.25 suy ra 2n 1 + 2n+2 = 9.25 0,5® suy ra 2n (1/2 +4) = 9. 25 suy ra 2n 1 .9 =9. 25 suy ra n 1 = 5 suy ra n=6. 0,5® c/ 3n+2 2n+2+3n 2n=3n(32+1) 2n(22+1) = 3n.10 2n.5 0,5® v× 3n.10 ⋮10 v 2n.5 = 2n 1.10 ⋮10 suy ra 3n.10 2n.5 ⋮10 0,5® B i 2: a/ Gäi x, y, z lÇn l−ît l sè häc sinh cña 7A, 7B, 7C tham gia trång c©y(x, y, z∈z+) ta cã: 2x=3y = 4z v x+y+z =130 0,5® hay x/12 = y/8 = z/6 m x+y+z =130 0,5® suy ra: x=60; y = 40; z=30 7(4343 1717) b/ 0,7(4343 1717) = 0,5®10 Ta cã: 4343 = 4340.433= (434)10.433 v× 434 tËn cïng l 1 cßn 433 tËn cïng l 7 suy ra 4343 tËn cïng bëi 7 1717 = 1716.17 =(174)4.17 v× 174 cã tËn cïng l 1 suy ra (174)4 cã tËn cïng l 1 suy ra 1717 = 1716.17 tËn cïng bëi 7 0,5® suy ra 4343 v 1717 ®Òu cã tËn cïng l 7 nªn 4343 1717 cã tËn cïng l 0 suy ra 4343 1717 chia hÕt cho 10 0,5® suy ra 0,7(4343 1717) l mét sè nguyªn. B i 3: 4®( Häc sinh tù vÏ h×nh) a/∆ MDB= ∆ NEC suy ra DN=EN 0,5® 53
- b/ MDI= NEI suy ra IM=IN suy ra BC c¾t MN t¹i ®iÓm I l trung ®iÓm cña MN 0,5® c/ Gäi H l ch©n ®−êng cao vu«ng gãc kÎ tõ A xuèng BC ta cã AHB= AHC suy ra HAB=HAC 0,5® gäi O l giao AH víi ®−êng th¼ng vu«ng gãc víi MN kÎ tõ I th× OAB= OAC (c.g.c) nªn OBA = OCA(1) 0,5® OIM= OIN suy ra OM=ON 0,5® suy ra OBN= OCN (c.c.c) OBM=OCM(2) 0,5® Tõ (1) v (2) suy ra OCA=OCN=900 suy ra OC ┴ AC 0,5® VËy ®iÓm O cè ®Þnh. §¸p ¸n ®Ò 28 C©u 1: (2®). a. a + a = 2a víi a ≥ 0 (0,25®) Víi a < 0 th× a + a = 0 (0,25®). b. a a Víi a≥ 0 th× a a = a – a = 0 Víi a< 0 th× a a = a a = 2a c.3(x – 1) 2x + 3 Víi x + 3 ≥ 0 ⇒ x ≥ 3 Ta cã: 3(x – 1) – 2 x + 3 = 3(x – 1) – 2(x + 3) = 3x – 3 – 2x – 6 = x – 9. (0,5®) Víi x + 3 < 0 → x< 3 Tacã: 3(x – 1) 2x + 3 = 3(x – 1) + 2(x + 3). = 3x – 3 + 2x + 6 = 5x + 3 (0,5®). C©u 2: T×m x (2®). a.T×m x, biÕt: 5x 3 x = 7 ⇔ 5x− 3 = x + 7 (1) (0,25 ®) §K: x ≥ 7 (0,25 ®) 5x− 3 = x + 7 ()1 ⇒ − = − + . (0,25 ®) 5x 3() x 7 VËy cã hai gi¸ trÞ x tháa m n ®iÒu kiÖn ®Çu b i. x1 = 5/2 ; x2= 2/3 (0,25®). b. 2x + 3 4x < 9 (1,5®) ⇔2x + 3 < 9 + 4x (1) 9 §K: 4x +9 ≥ 0 ⇔ x ≥ − (1) ⇔ −()4x + 9 < 2 x − 3 < 4 x + 9 4 −2 <x < − 3 (t/m§K) (0,5®). C©u 3: 54
- Gäi ch÷ sè cña sè cÇn t×m l a, b, c. V× sè c n t×m chia hÕt 18 → sè ®ã ph¶i chia hÕt cho 9. VËy (a + b + c ) chia hÕt cho 9. (1) (0,5®). Tacã: 1 ≤ a + b + c ≤ 27 (2) V× 1 ≤ a ≤ 9 ; b ≥ 0 ; 0 ≤ c ≤ 9 Tõ (1) v (2) ta cã (a + b + c) nhËn c¸c gi¸ trÞ 9, 18, 27 (3). Suy ra: a = 3 ; b = 6 ; c = 9 (0,5®). V× sè c n t×m chia hÕt 18 nªn võa chia hÕt cho 9 võa chia hÕt cho 2 → ch÷ sè h ng ®¬n vÞ ph¶i l sè ch½n. VËy ssè c n t×m l : 396 ; 963 (0,5®). VÏ h×nh ®óng viÕt gi¶ thiÕt, kÕt luËn ®óng (0,5®). Qua N kÎ NK // AB ta cã. EN // BK ⇒ NK = EB EB // NK EN = BK L¹i cã: AD = BE (gt) ⇒ AD = NK (1) Häc sinh chøng minh ∆ ADM = ∆ NKC (gcg) (1®) ⇒ DM = KC (1®) §¸p ¸n ®Ò 29 102007 + 10 9 B i 1: Ta cã: 10A = = 1 + (1) 102007+ 1 10 2007 + 1 102008 + 10 9 T−¬ng tù: 10B = = 1 + (2) 102008+ 1 10 2008 + 1 9 9 Tõ (1) v (2) ta thÊy : > ⇒ 10A > 10B⇒ A > B 102007+ 1 10 2008 + 1 B i 2:(2®iÓm) Thùc hiÖn phÐp tÝnh: −1 − 1 − 1 A = 1+ . 1 + 1 + (1 2).2 (1 3).3 (1 2006)2006 2 2 2 2 5 9 2007.2006− 2 4 10 18 2007.2006 − 2 = . . = . . (1) 3 6 10 2006.2007 6 12 20 2006.2007 M : 2007.2006 2 = 2006(2008 1) + 2006 2008 = 2006(2008 1+ 1) 2008 = 2008(2006 1) = 2008.2005 (2) Tõ (1) v (2) ta cã: 4.1 5.2 6.3 2008.2005 (4.5.6 2008)(1.2.3 2005) 2008 1004 A = . . = = = 2.3 3.4 4.5 2006.2007 (2.3.4 2006)(3.4.5 2007) 2006.3 3009 55
- x 1 1 1 x 1 B i 3:(2®iÓm) Tõ: − = ⇒ = − 8 y 4 y 8 4 1 x - 2 Quy ®ång mÉu vÕ ph¶i ta cã : = . Do ®ã : y(x 2) =8. y 8 §Ó x, y nguyªn th× y v x 2 ph¶i l −íc cña 8. Ta cã c¸c sè nguyªn t−¬ng øng cÇn t×m trong b¶ng sau: Y 1 1 2 2 4 4 8 8 x 2 8 8 4 4 2 2 1 1 X 10 6 6 2 4 0 3 1 B i 4:(2 ®iÓm) Trong tam gi¸c tæng ®é d i hai c¹nh lín h¬n c¹nh thø 3. VËy cã: b + c > a. Nh©n 2 vÕ víi a >0 ta cã: a.b + a.c > a2. (1) T−¬ng tù ta cã : b.c + b.a > b2 (2) a.c + c.b > c2 (3). Céng vÕ víi vÕ cña (1), (2), (3) ta ®−îc: 2(ab + bc + ca) > a2 + b2 + c2. B i 5:(3 ®iÓm) VÏ tia ph©n gi¸c ABK c¾t ®−êng th¼ng CK ë I. A Ta cã: △IBC c©n nªn IB = IC. 0 △BIA = △CIA (ccc) nªn BIA= CIA = 120 . Do ®ã: I △BIA =△BIK (gcg) ⇒ BA=BK b) Tõ chøng minh trªn ta cã: K C 0 BAK = 70 B §¸p ¸n ®Ò 30 B i 1. 4® a) 74( 72 + 7 – 1) = 74. 55 ⋮ 55 (®pcm) 2® b) TÝnh A = 1 + 5 + 52 + 53 + . . . + 549 + 55 0 (1) 5.A = 5 + 52 + 53 + . . . + 549 + 55 0 + 551 (2) 1® 51 −1 Trõ vÕ theo vÕ (2) cho (1) ta cã : 4A = 551 – 1 => A = 5 4 1® B i 2. 4® a b c a2 b 3 c a+ 2 b − 3 c − 20 a) = = = = = = = 5 => a = 10, b = 15, c =20. 2 3 4 2 6 12 2+ 6 − 12 − 4 2® 56
- b) Gäi sè tê giÊy b¹c 20 000®, 50 000®, 100 000® theo thø tù l x, y, z ( x, y, z ∈N *) 0,5® Theo b i ra ta cã: x + y + z = 16 v 20 000x = 50 000y = 100 000z 0,5® BiÕn ®æi: 20 000x = 50 000y = 100 000z 20000x 50000 y 100000 z x y z x+ y + z 16 => = = ⇔ = = = = = 2 100000 100000 100000 5 2 1 5+ 2 + 1 8 0,5® Suy ra x = 10, y = 4, z = 2. VËy sè tê giÊy b¹c lo¹i 20 000®, 50 000®, 100 000® theo thø tù l 10; 4; 2. 0,5® B i 3. 4® a) f(x) + g(x) = 12x4 – 11x3 +2x2 1 x 1 4 4 1® f(x) g(x) = 2x5 +2x4 – 7x3 – 6x2 1 x + 1 4 4 1® b) A = x2 + x4 + x6 + x8 + + x100 t¹i x = 1 A = ( 1)2 + ( 1)4 + ( 1)6 + + ( 1)100 = 1 + 1 + 1 + + 1 = 50 (cã 50 sè h¹ng) 2® B i 4. 4®: VÏ h×nh (0,5®) – phÇn a) 1,5® phÇn b) 2® b a) ∆ ABD = ∆ EBD (c.g.c) => DA = DE b) V× ∆ ABD = ∆ EBD nªn gãc A b»ng gãc BED e Do gãc A b»ng 900 nªn gãc BED b»ng 900 c a d B i 5: 4® a) Tam gi¸c ABC v tam gi¸c ABG cã: a DE//AB, DE = 1 AB, IK//AB, IK= 1 AB 2 2 i e Do ®ã DE // IK v DE = IK G b) ∆ GDE = ∆ GIK (g. c. g) v× cã: DE = IK (c©u a) k Gãc GDE = gãc GIK (so le trong, DE//IK) c Gãc GED = gãc GKI (so le trong, DE//IK) b d 2 ⇒ GD = GI. Ta cã GD = GI = IA nªn AG = AD 3 VÏ h×nh: 0,5® PhÇn a) ®óng: 2® PhÇn b) ®óng: 1,5® 57