Đề giao lưu học sinh giỏi Toán Lớp 7 - Năm học 2022-2023 - Phòng GD&ĐT Chí Linh (Có hướng dẫn chấm)
Một trường THCS làm bể tập bơi cho học sinh có dạng hình hộp chữ nhật
với chiều dài 15m, chiều rộng 10m, chiều sâu 1,2m. Người ta lát gạch men các mặt
xung quanh và đáy của bể (Coi mạch ghép giữa các viên gạch men không đáng kể).
a) Tính diện tích gạch men cần dùng để lát bể bơi đó?
b) Cần phải bơm bao nhiêu mét khối nước vào bể để mực nước trong bể thấp
hơn mép trên của bể là 20cm (Ban đầu bể không có nước) ?
với chiều dài 15m, chiều rộng 10m, chiều sâu 1,2m. Người ta lát gạch men các mặt
xung quanh và đáy của bể (Coi mạch ghép giữa các viên gạch men không đáng kể).
a) Tính diện tích gạch men cần dùng để lát bể bơi đó?
b) Cần phải bơm bao nhiêu mét khối nước vào bể để mực nước trong bể thấp
hơn mép trên của bể là 20cm (Ban đầu bể không có nước) ?
Bạn đang xem tài liệu "Đề giao lưu học sinh giỏi Toán Lớp 7 - Năm học 2022-2023 - Phòng GD&ĐT Chí Linh (Có hướng dẫn chấm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_giao_luu_hoc_sinh_gioi_toan_lop_7_nam_hoc_2022_2023_phong.pdf
Nội dung text: Đề giao lưu học sinh giỏi Toán Lớp 7 - Năm học 2022-2023 - Phòng GD&ĐT Chí Linh (Có hướng dẫn chấm)
- UBND THÀNH PHỐ CHÍ LINH ĐỀ GIAO LƯU HỌC SINH GIỎI PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC: 2022 - 2023 MÔN: TOÁN 7 Thời gian làm bài: 120 phút (Đề bài gồm: 05 câu, 01 trang) Câu 1 (2,0 điểm) Thực hiện phép tính 13 857 .25 a) (0,6−− 75%) : 1 b) 57 54 125 .4 Câu 2 (2,0 điểm) 11 5 15 11 1) Tìm x, biết − −x= − − 13 42 28 13 n4− 2) Chứng tỏ phân số có dạng là phân số tối giản với mọi số nguyên n. 3n− 11 Câu 3 (2,0 điểm) 1) Tìm x, y, z biết 5x = 6y; 3y = 2z và 5x – 7y + 9z = 250 2) Cho đa thức A(x) = x4 – 123x3 + 123x2 – 123x + 125. Tính A(122) ? 3) Cho 2 đa thức P = 5x4 + 3x2 +4x3 − 3 x −7x4 − 1 x + 3 4 4 Q = 1 x3 – 2x4 + 4x2 + x + 7 x3 2 2 Tìm đa thức H, biết P – H = Q – (x2 + 3x – 7) Câu 4 (3,0 điểm) 1) Cho tam giác ABC có 3 góc nhọn và AB < AC. Kẻ BE⊥AC tại E, CF AB tại F, BE cắt CF tại H. Kẻ HQ//AC, HP//AB (Q AB, P AC). a) Chứng minh rằng: AHQ = HAP b) Gọi M là trung điểm của BC. Chứng minh tam giác MEF cân và 퐹̂ = ̂. 2 c) Chứng minh rằng: HA + HB + HC < (AB + AC + BC) 3 2) Một trường THCS làm bể tập bơi cho học sinh có dạng hình hộp chữ nhật với chiều dài 15m, chiều rộng 10m, chiều sâu 1,2m. Người ta lát gạch men các mặt xung quanh và đáy của bể (Coi mạch ghép giữa các viên gạch men không đáng kể). a) Tính diện tích gạch men cần dùng để lát bể bơi đó? b) Cần phải bơm bao nhiêu mét khối nước vào bể để mực nước trong bể thấp hơn mép trên của bể là 20cm (Ban đầu bể không có nước) ? 1 2 3 4 2023 1 Câu 5 (1,0 điểm) Chứng minh S= + + + + + < 4 42 4 3 4 4 4 2023 2 Hết Chú ý: Thí sinh không được sử dụng máy tính cầm tay.
- UBND THÀNH PHỐ CHÍ LINH HƯỚNG DẪN CHẤM PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ GIAO LƯU HỌC SINH GIỎI NĂM HỌC: 2022 - 2023 MÔN: TOÁN 7 Thời gian làm bài: 120 phút (Hướng dẫn chấm gồm: 04 trang) Chú ý: - Phần nào HS làm theo cách khác mà đúng chuẩn KT – KN thì vẫn cho điểm tối đa của phần đó. - GV chấm có thể chia nhỏ biểu điểm cho phù hợp (nếu cần), nhưng phải thống nhất trong nhóm chấm. Câu Ý Đáp án Điểm 1 13 3 3 1 7 (0,6−− 75%) : 1 = −− : 0,25 54 5 4 5 4 12 15 4 35 = −− : 0,25 20 20 20 20 a) −−3 31 = : 0,25 20 20 3 = 0,25 31 3257 857 .25 (2) .( 5 ) 57 = 57 0,50 125 .4 (532) .( 2 ) b) 215 .5 14 = 0,25 515 .2 14 2 = 0,25 5 2 11 5 15 11 - - x = - - 1) 13 42 28 13 0,25 11 5 15 11 - + x =- + 13 42 28 13 15 5 x = - + 0,25 28 42 5 x = - 0,25 12 5 Vậy x = - . 0,25 12 2) Gọi ước chung của n – 4 và 3n – 11 là d 0,25
- n− 4 d 3n− 11 d 3n− 12 d 0,25 3n− 11 d Do đó (3n – 12) – (3n – 11) = -1 d d1 = 0,25 n4− Vậy phân số có dạng là phân số tối giản với mọi số 3n− 11 0,25 nguyên n. 3 1) Ta có 3y = 2z nên 6y = 4z 0,25 Mà 5x = 6y suy ra 5x = 6y = 4z 5x 6y 4z x y z = = = = = 0,25 60 60 60 12 10 15 Áp dụng tính chất của dãy tỉ số bằng nhau ta có x y z 5x7y9z−+ 250 0,25 = = = = = 2 12 10 15 5.12−+ 7.10 9.15 125 Suy ra x = 24; y = 20; z = 30 0,25 2) Khi x = 122 thì ta có 123 = x +1 0,25 Do đó A(x) = x4 – (x +1).x3 + (x +1).x2 – (x +1).x + 125 = x4 – x4 - x3 + x3 + x2 – x2 - x + 125 = - x + 125 0,25 Suy ra A(122) = - 122 + 125 = 3 3) Vì P – H = Q – (x2 + 3x – 7) Nên H = P – [Q – (x2 + 3x – 7)] 0,25 = P – Q + (x2 + 3x – 7) Ta có P - Q = (5x4 + 3x2 +4x3 - 3 x -7x4 - 1 x + 3)- ( 1 x3 – 2x4 + 4 4 2 4x2 + x + 7 x3 ) 2 4 2 3 4 3 4 2 3 = 5x + 3x +4x - x -7x - x + 3 - x + 2x - 4x - x - x 0,25 = - x2 - 2x + 3 Suy ra H = - x2 - 2x + 3 + x2 + 3x – 7 = x – 4 Vậy H = x – 4 4 1) Học sinh vẽ hình đúng theo dữ kiện chung của đề bài A P Q E F 0,25 H B C
- a) Xét AHQ và HAP, có QAH= PHA (2 góc so le trong) AH là cạnh chung 0,25 QHA= PAH (2 góc so le trong) Suy ra AHQ = HAP (g.c.g) b) Lấy điểm D sao cho M là trung điểm của FD A P Q E F H B M 0,25 C Chứng minh BMF = CMD (c.g.c) BF = CD và BF // CD D Từ đó chứng minh được BFC = DCF (c.g.c) BC = FD = 2FM Chứng minh tương tự BC = 2EM FM = EM = BM = CM tam giác EFM cân tại M. Tương tự các tam giác BMF, EMC cân tại M Từ đó chứng minh được 18000−− EMF 180 EMC AEF= 18000 − FEM − MEC = 180 − − 22 0,25 EMF+ EMC FMC 2ABC AEF = = = = ABC 2 2 2 (Do FMC là góc ngoài của BFM) Vậy AEF= ABC c) Theo a, ta có AHQ = HAP HQ = AP và AQ = HP Xét AHQ có AH < HQ + AQ (bất đẳng thức tam giác) 0,25 AH < AQ + AP (1) Mặt khác HQ // AC, mà BH ⊥ AC HQ BH Chứng minh tương tự ta được CH HP BH < BQ và CH < CP (2) Từ (1) và (2) HA + HB + HC < AB + AC (3) 0,25
- Chứng minh tương tự ta có HA + HB + HC < AC + BC (4) HA + HB + HC < AB + BC (5) 2 Từ (3), (4), (5) HA + HB + HC < (AB + AC + BC) 3 2) Học sinh không phải vẽ hình a) Diện tích xung quanh bể là: 2.(15 + 10).1,2 = 60 (m2) 0,25 Diện tích đáy bể là: 15.10 = 150 (m2) 0,25 Diện tích gạch men dùng để lát là: 60 + 150 = 210 (m2) 0,25 b) Đổi 20cm = 0,2m 0,25 Chiều cao của mực nước trong bể cần bơm là: 0,25 1,2 – 0,2 = 1 (m) Thể tích nước cần bơm vào bể là: 15.10.1 = 150 (m3) 0,25 1 2 3 4 2023 S= +2 + 3 + 4 + + 2023 4 4 4 4 4 0,25 2 3 4 2023 Nên ta có 4S = 1+ + + + + 4 42 4 3 4 2022 1 1 1 1 2023 4S – S = 1+ +2 + 3 + + 2022 − 2023 4 4 4 4 4 0,25 1 1 1 1 3S < 1+ + + + + 4 42 4 3 4 2022 1 1 1 1 Đặt A = 1+ + + + + 4 42 4 3 4 2022 5 1 1 1 4A = 4+ 1 + + + + 4 42 4 2021 0,25 1 4A – A = 4 - 42022 4 3A < 4 A < 3 4 41 Suy ra S < < = 9 82 0,25 1 2 3 4 2023 1 Vậy S= + + + + + < 4 42 4 3 4 4 4 2023 2