Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 15 (Có hướng dẫn chấm)

Bài 6: (3 điểm):   

Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì  thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng  AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:

a) BH = AI. 

b) BH2 + CI2 có giá trị không đổi.

c) Đường thẳng Dn vuông góc với AC.

d) IM là phân giác của góc HIC. 

 

 

docx 3 trang thanhnam 11/05/2023 5360
Bạn đang xem tài liệu "Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 15 (Có hướng dẫn chấm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_khao_sat_hoc_sinh_gioi_cap_huyen_toan_lop_7_de_15_co_huon.docx

Nội dung text: Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 15 (Có hướng dẫn chấm)

  1. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 7 CẤP HUYỆN Môn: Toán – Lớp 7 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) ĐỀ 15 Bài 1: (1,5 điểm): So sánh hợp lý: 200 1000 1 1 a) và b) (-32)27 và (-18)39 16 2 Bài 2: (1,5 điểm): Tìm x biết: a) (2x-1)4 = 16 b) (2x+1)4 = (2x+1)6 c) x 3 8 20 Bài 3: (1,5 điểm): Tìm các số x, y, z biết : a) (3x - 5)2006 +(y2 - 1)2008 + (x - z) 2100 = 0 x y z b) và x2 + y2 + z2 = 116 2 3 4 Bài 4: (1,5 điểm): Cho đa thức : A = 11x4y3z2 + 20x2yz - (4xy2z - 10x2yz + 3x4y3z2) - (2008xyz2 + 8x4y3z2) a) Xác định bậc của A. b) Tính giá trị của A nếu 15x - 2y = 1004z. Bài 5: (1 điểm): Chứng minh rằng: x y z t M có giá trị không phải là số tự nhiên. x, y, z, t x y z x y t y z t x z t N* ). Bài 6: (3 điểm): Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) BH = AI. b) BH2 + CI2 có giá trị không đổi. c) Đường thẳng DN vuông góc với AC. d) IM là phân giác của góc HIC.
  2. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 7 CẤP HUYỆN Môn: Toán – Lớp 7 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) HƯỚNG DẪN CHẤM ĐỀ 15 Bài 1: (1,5 điểm): 200 4.200 800 1000 1 1 1 1 a) Cách 1: = > 16 2 2 2 200 200 5.200 1000 1 1 1 1 Cách 2: > = 16 32 2 2 (0,75điểm) b) 3227 = (25 )27 = 2135 -1839 (-32)27 > (-18)39 (0,25điểm) Bài 2: (1,5 điểm): a) (2x-1)4 = 16 . Tìm đúng x =1,5 ; x = -0,5 (0,5điểm) b) (2x+1)4 = (2x+1)6. Tìm đúng x = -0,5 ; x = 0; x = -15 (0,5điểm) c) x 3 8 20 x 3 8 20 ; x 3 8 20 x 3 8 20 x 3 28 x = 25; x = - 31 (0,25điểm) x 3 8 20 x 3 12 : vô nghiệm (0,25điểm) Bài 3: (1,5 điểm): a) (3x - 5)2006 +(y2 - 1)2008 + (x - z) 2100 = 0 (3x - 5)2006 = 0; (y2 - 1)2008 = 0; (x - z) 2100 = 0 (0,25điểm) 5 3x - 5 = 0; y2 - 1 = 0 ; x - z = 0 x = z = ;y = -1;y = 1 (0,5điểm) 3 x y z b) và x2 + y2 + z2 = 116 2 3 4 x2 y2 z2 x2 y2 z2 116 Từ giả thiết 4 4 9 16 4 9 16 29 (0,25điểm) Tìm đúng: (x = 4; y = 6; z = 8 ); (x = - 4; y = - 6; z = - 8 ) (0,5điểm)
  3. Bài 4: (1,5 điểm): a/ A = 30x2yz - 4xy2z - 2008xyz2 A có bậc 4 (0,5điểm) b/ A = 2xyz( 15x - 2y - 1004z ) A = 0 nếu 15x - 2y = 1004z (0,725điểm) Bài 5: (1 điểm): x x x Ta có: (0,25điểm) x y z t x y z x y y y y x y z t x y t x y z z z (0,25điểm) x y z t y z t z t t t t x y z t x z t z t x y z t x y z t M ( ) ( ) x y z t x y x y z t z t (0,25điểm) hay: 1 < M < 2 . Vậy M có giá trị không phải là số tự nhiên (0,25điểm) Bài 6: (3 điểm): a. AIC = BHA BH = AI (0,5điểm) b. BH2 + CI2 = BH2 + AH2 = AB2 (0,75điểm) c. AM, CI là 2 đường cao cắt nhau tại N N là trực tâm DN  AC (0,75điểm) d. BHM = AIM HM = MI và BMH = IMA (0,25điểm) mà :  IMA + BMI = 900 BMH + BMI = 900 (0,25điểm) HMI vuông cân HIM = 450 (0,25điểm) mà : HIC = 900 HIM =MIC= 450 IM là phân giác HIC (0,25điểm) B H D M I N A C