Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 5 (Có hướng dẫn chấm)
Câu 4: (3,0 điểm)
Cho tam giác ABC (góc BAC<90°), đường cao AH. Gọi E; F lần lượt là điểm đối xứng của H qua AB; AC, đường thẳng EF cắt AB; AC lần lượt tại M và N. Chứng minh rằng:
a. AE = AF;
b. HA là phân giác của góc MHN;
c. CM // EH; BN // FH.
Cho tam giác ABC (góc BAC<90°), đường cao AH. Gọi E; F lần lượt là điểm đối xứng của H qua AB; AC, đường thẳng EF cắt AB; AC lần lượt tại M và N. Chứng minh rằng:
a. AE = AF;
b. HA là phân giác của góc MHN;
c. CM // EH; BN // FH.
Bạn đang xem tài liệu "Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 5 (Có hướng dẫn chấm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_khao_sat_hoc_sinh_gioi_cap_huyen_toan_lop_7_de_5_co_huong.docx
Nội dung text: Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 5 (Có hướng dẫn chấm)
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 7 CẤP HUYỆN Môn: Toán – Lớp 7 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) ĐỀ 5 Câu 1: (1,5 điểm) 3 3 0,375 0,3 1,5 1 0,75 a. Thực hiện phép tính: 11 12 5 5 5 0,265 0,5 2,5 1,25 11 12 3 b. So sánh: 50 26 1 và 168 . Câu 2: (4,0 điểm) a. Tìm x biết: x 2 3 2x 2x 1 b. Tìm x; y Z biết: xy 2x y 5 c. Tìm x; y; z biết: 2x = 3y; 4y = 5z và 4x - 3y + 5z = 7 Câu 3: (1,5 điểm) a. Tìm đa thức bậc hai biết f(x) - f(x-1) = x. Từ đó áp dụng tính tổng S = 1+2+3+ + n. 2bz 3cy 3cx az ay 2bx x y z b. Cho Chứng minh: . a 2b 3c a 2b 3c Câu 4: (3,0 điểm) Cho tam giác ABC ( B· AC 90o ), đường cao AH. Gọi E; F lần lượt là điểm đối xứng của H qua AB; AC, đường thẳng EF cắt AB; AC lần lượt tại M và N. Chứng minh rằng: a. AE = AF; b. HA là phân giác của M· HN ; c. CM // EH; BN // FH. Hết./. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 7 CẤP HUYỆN Môn: Toán – Lớp 7 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) HƯỚNG DẪN CHẤM ĐỀ 5 Câu Ý Nội dung Điểm
- a. 0,5 3 3 3 3 3 3 3 0.25 điểm A = 8 10 11 12 2 3 4 53 5 5 5 5 5 5 100 10 11 12 2 3 4 A= 1 1 1 1 1 1 1 165 132 120 110 3 3 3( ) 8 10 11 12 2 3 4 3 Câu 1 1320 1,5 53 1 1 1 1 1 1 53 66 60 55 5 0.25 5 5 5( ) điểm 100 10 11 12 2 3 4 100 660 263 263 3. 3. 3 3 3945 3 1881 1320 1320 53 49 1749 1225 5. 5 5 5948 5 29740 100 660 3300 b. 1 Ta có: 50 > 49 = 4; 26 > 25 = 5 0.5 điểm 0,5 Vậy: 50 26 1 7 5 1 13 169 168 a. 1 Nếu x >2 ta có: x - 2 + 2x - 3 = 2x + 1 x = 6 0.25 điểm 3 0.25 Nếu x 2 ta có: 2 - x + 2x - 3 = 2x + 1 x = - 2 loại 2 3 4 0.25 Nếu x< ta có: 2 - x + 3 - 2x = 2x + 1 x = 2 5 0.25 Vậy: x = 6 ; x = 4 5 b. 1.5 Ta có: xy + 2x - y = 5 x(y+2) - (y+2) = 3 0. 5 điểm 0. 5 Câu 2 (y+2)(x-1) = 3.1 =1.3 = (-1).(-3) = (-3).(-1) 4 điểm y + 2 3 1 -1 -3 x - 1 1 3 -3 -1 0.5 X 2 4 -2 0 Y 1 -1 -3 -5 c. 1.5 Từ: 2x= 3y; 4y = 5z 8x = 12y = 15z 0. 5 điểm x y z 4x 3y 5z 4x 3y 5z 7 = 12 1 1 1 1 1 1 1 1 1 7 0.5 8 12 15 2 4 3 2 4 3 12 0. 5 1 3 1 1 4 x = 12. = ; y = 12. = 1; z = 12. 8 2 12 15 5 a. 0.5 Đa thức bậc hai cần tìm có dạng: f x ax2 bx c (a 0). điểm Ta có : f x 1 a x 1 2 b x 1 c . Câu 3 0.25 a 1 1.5 2a 1 2 điểm f x f x 1 2ax a b x b a 0 b 1 2
- 1 1 Vậy đa thức cần tìm là: f x x2 x c (c là hằng số tùy ý). 2 2 Áp dụng: 0.25 + Với x = 1 ta có : 1 f 1 f 0 . + Với x = 2 ta có : 1 f 2 f 1 . . + Với x = n ta có : n f n f n 1 . n2 n n n 1 S = 1+2+3+ +n = f n f 0 = c c . 2 2 2 b. 1 2bz 3cy 3cx az ay 2bx điểm a 2b 3c 2abz 3acy 6bcx 2abz 3acy 6bcx 0.5 a2 4b2 9c2 2abz 3acy 6bcx 2abz 3acy 6bcx 2 2 2 0 a 4b 9c 0.25 z y 2bz - 3cy = 0 (1) 3c 2b 0.25 x z x y z 3cx - az = 0 (2); Từ (1) và (2) suy ra: a 3c a 2b 3c Câu 4 Hình 0.25 F 3 điểm vẽ 0. 5 đ A N M E B C H a. 1 Vì AB là trung trực của EH nên ta có: AE = AH (1) 0.25 điểm Vì AC là trung trực của HF nên ta có: AH = AF (2) 0.25 Từ (1) và (2) suy ra: AE = AF 0. 5 b. 1 Vì M AB nên MB là phân giác E· MH MB là phân giác 0.25 điểm ngoài góc M của tam giác MNH 0.25
- Vì N AC nên NC là phân giác F· NH NC là phân giác 0.25 0.25 ngoài góc N của tam giác MNH Do MB; NC cắt nhau tại A nên HA là phân giác trong góc H của tam giác HMN hay HA là phân giác của M· HN . c. 1 Ta có AH BC (gt) mà HM là phân giác M· HN HB là phân 0.25 điểm giác ngoài góc H của tam giác HMN 0.25 MB là phân giác ngoài góc M của tam giác HMN (cmt) NB là phân giác trong góc N của tam giác HMN 0.25 BN AC ( Hai đường phân giác của hai góc kề bù thì vuông góc với nhau). BN // HF ( cùng vuông góc với AC) Chứng minh tương tự ta có: EH // CM Lưu ý: Học sinh làm cách khác đúng thì vẫn cho điểm tối đa. Học sinh không vẽ hình hoặc vẽ hình sai thì không chấm bài hình.