Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2020-2021 - Sở GD và ĐT Quảng Ngãi

Bài 5: (1,0 điểm) Trên công trường có những thanh sắt dài 7,4 m. Người ta muốn cắt
các thanh sắt đó thành các đoạn dài 0,7 m và 0,5 m để sử dụng,
a) (0,5 điểm) Em hãy nêu phương án cắt mà không phải hàn nối các đoạn sắt cần
dùng?
b) (0,5 điểm) Muốn có 1000 đoạn sắt 0,7 m và 2000 đoạn sắt 0,5 m. Ta phải dùng ít
nhất bao nhiêu thanh sắt 7,4 m nêu trên?
pdf 2 trang Hải Đông 01/03/2024 200
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2020-2021 - Sở GD và ĐT Quảng Ngãi", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_thi_chon_hoc_sinh_gioi_cap_tinh_mon_toan_lop_9_nam_hoc_20.pdf

Nội dung text: Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 9 - Năm học 2020-2021 - Sở GD và ĐT Quảng Ngãi

  1. SỞ GIÁO DỤC ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH QUẢNG NGÃI LỚP 9_THCS NĂM HỌC 2020-2021 MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút Ngày thi 11/3/2021 Thời gian làm bài :150 phút Bài 1(4,0 điểm). a)(1,5 điểm) Tìm số nguyên dương n lớn nhất để A 427 4 2021 4n là số chính phương b)(1,5 điểm) Tìm số nguyên x,y thỏa xy32 y 46 xy c)(1,0 điểm) Số nhà bạn An là số có hai chữ số ab biết ab ( a 1)22 ( b 1) .Tìm số nhà bạn An. Bài 2(4,0 điểm). a.(2,0 điểm). Giải phương trình 5 4xx 3 7 3 x22 y xy 12 x b.(2,0 điểm). Giải hệ phương trình 22 x( x y ) x 2 2 y Bài 3(4,0 điểm). a.(2,0 điểm). Cho các số dương a,b thỏaa b 2021 a22 2021 b .Chứng minh ab22 2021 b.(2,0 điểm). Tìm min của P=1-xy ,trong đó x,y là số thực thỏa x2021 y 20212 x 1010 y 1010 Bài 4(7,0 điểm). a.(1,5 điểm). Cho tam giác ABC và M là điểm nằm trong tam giác.Từ M kẻ tia MD song song AB(với D thuộc BC),tia ME song song BC(với E thuộc AC),tia MF song song AC(với F thuộc BA).Chứng minh 3SSDEF ABC với SDEF là diện tích ta giác ABC,với SABC là diện tích ta giác ABC. b.(5,5 điểm). Từ điểm P kẻ hai tiếp tuyến PA,PB với (O;R),A,B là tiếp điểm.Gọi H là chân đường vuông góc hạ từ A đến BC đường kính của đường tròn i.Chứng minh PC cắt AH tại trung điểm AH. ii.Cho OP=a.Tính AH theo a và R iii.Đường thẳng d qua P sao cho khoảng cách từ O đến d bằng R 2 , đường thẳng vuông góc với PO tại O cắt tia PB tại M. Xác định vị trí của P trên d để diện tích tam giác POM nhỏ nhất Bài 5: (1,0 điểm) Trên công trường có những thanh sắt dài 7,4 m. Người ta muốn cắt các thanh sắt đó thành các đoạn dài 0,7 m và 0,5 m để sử dụng, a) (0,5 điểm) Em hãy nêu phương án cắt mà không phải hàn nối các đoạn sắt cần dùng? b) (0,5 điểm) Muốn có 1000 đoạn sắt 0,7 m và 2000 đoạn sắt 0,5 m. Ta phải dùng ít nhất bao nhiêu thanh sắt 7,4 m nêu trên?