Đề thi chọn học sinh giỏi cấp trường năm học 2018-2019 môn Toán Lớp 11 - Trường THPT Lưu Hoàng (Có đáp án)
Câu 4 (4,0 điểm). Cho A, B, C là ba góc của tam giác ABC.
a) Chứng minh rằng tam giác ABC vuông nếu:
b) Tìm giá trị lớn nhất của biểu thức:
Câu 5 (3,0 điểm). Trong mặt phẳng Oxy, cho đường tròn (C1): , đường tròn (C2): .
a) Tìm giao điểm của hai đường tròn (C1) và (C2).
b) Gọi giao điểm có tung độ dương của (C1) và (C2) là A viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau.
Câu 6 (3,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tính giá trị nhỏ nhất của đoạn SK.
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_cap_truong_nam_hoc_2018_2019_mon_t.doc
Nội dung text: Đề thi chọn học sinh giỏi cấp trường năm học 2018-2019 môn Toán Lớp 11 - Trường THPT Lưu Hoàng (Có đáp án)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG TRƯỜNG THPT LƯU HOÀNG NĂM HỌC 2018 – 2019 Môn thi: Toán - Lớp: 11 ĐỀ CHÍNH THỨC (Thời gian làm bài: 150 phút, không kể thời gian giao đề) Câu 1 (2,0 điểm). Giải phương trình sau: x2 x 2013 2013 Câu 2 (3,0 điểm). Cho phương trình (2sin x 1)(2cos 2x 2sin x m) 1 2cos2x (Với m là tham số) a) Giải phương trình với m = 1. b) Tìm m để phương trình có đúng 2 nghiệm thuộc 0; . Câu 3 (5,0 điểm). x2 y2 3x 4y 1 a) Giải hệ phương trình: 2 2 3x 2y 9x 8y 3 b) Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng địa chỉ. Câu 4 (4,0 điểm). Cho A, B, C là ba góc của tam giác ABC. cos B cosC a) Chứng minh rằng tam giác ABC vuông nếu: sin A sin B sin C sin2 A sin2 B sin2 C b) Tìm giá trị lớn nhất của biểu thức: M cos2 A cos2 B cos2C 2 2 Câu 5 (3,0 điểm). Trong mặt phẳng Oxy, cho đường tròn (C 1): x y 13, đường tròn (C2): (x 6)2 y2 25 . a) Tìm giao điểm của hai đường tròn (C1) và (C2). b) Gọi giao điểm có tung độ dương của (C 1) và (C2) là A viết phương trình đường thẳng đi qua A cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau. Câu 6 (3,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông. b) M là điểm di động trên đoạn BC và BM = x, K là hình chiếu của S trên DM. Tính độ dài đoạn SK theo a và x. Tính giá trị nhỏ nhất của đoạn SK. HẾT Cán bộ coi thi không giải thích gì thêm! Họ và tên thí sinh: Số báo danh: Chữ ký giám thị coi thi số 1: Chữ ký giám thị coi thi số 2:
- ĐÁP ÁN THI CHỌN HỌC SINH GIỎI LỚP 11 CẤP TRƯỜNG Môn : TOÁN Câu Đáp án Điểm Câu 1 x2 x 2013 2013 . ĐK x 2013 0,25 Đặt t x 2013 ( với t t 0) t 2 x 2013 t 2 x 2013 . Ta có hệ PT: 0,5 x2 t 2013 (x t)(x t 1) 0 2 0,5 t x 2013 1 8053 + Với x +t =0 ta được t = -x x 2013 x . Giải ra ta được x là 2 0,25 nghiệm. + Với x – t +1 = 0 ta được : x +1 = t x 1 x 2013 . Giải ra ta được 0,25 1 8049 x là nghiệm 2 0,25 1 8053 1 8049 Đáp số : x , x 2 2 Câu 2 (2sin x 1)(2cos 2x 2sin x m) 1 2cos2x a , Với m =1 ta được phương trình : (2sin x 1)(2cos 2x 2sin x 1) 1 2cos2x (2sin x 1).cos2x 0 0,5 1 5 + sin x x k2 x k2 1,5 2 6 6 + cos 2x 0 x k 0,5 4 2 b, Phương trình đã cho tương đương với : (2sin x 1)(2cos 2x m 1) 0 0,25 1 5 Với sin x x x 0; 0,25 2 6 6 Để phương trình đã cho có đúng 2 nghiệm thuộc 0; thì phương trình : 0,25 1 m 5 cos2x vô nghiệm hoặc có hai nghiệm x ; x .Từ đó ta được m 3 v m =0 . 0,25 x2 y2 3x 4y 1 x2 3x y2 4y 1 x2 3x 1 0 0,5 Câu 3 2 2 2 2 2 0,5 3x 2y 9x 8y 3 3(x 3x) 2(y 4y) 3 y 4y 0 0,5 3 13 3 13 3 13 3 13 0,5 Ta được nghiệm của hệ là : ;0 ; ;4 ; ;0 ; ;4 ; 0,5 2 2 2 2 Câu 4 n 4 3 5 1 , Tìm hệ số của x trong khai triển sau: nx 3 biết n là số nguyên thoả mãn x
- hệ thức 2C1 C 2 n2 20 . n n Từ hệ thức 2C1 C 2 n2 20 . Đk n 2,n Z n2 3n 40 0 n 8 n 5 n n 0,5 Ta được n= 8 thoả mãn . 0,5 8 8 1 1 k 8 40 14k 3 8x5 2 3 x5 C k .28 k.x 3 4 Ta có : 3 3 8 . Khai triển chứa x m 0,5 x x k 0 40 14k 4 k 2. 0,5 3 0,5 4 2 6 Vậy hệ số của x là C8 .2 1792 Câu 5 cos B cosC a, Chứng minh rằng tam giác ABC vuông nếu : sin A sin B sin C A 0,5 sin cos B cosC A A A 0,5 Từ sin A 2sin .cos 2 2cos2 1 cos A 0 Â là góc A 0,5 sin B sin C 2 2 cos 2 2 0,5 vuông.Vậy tam giác ABC vuông tại A. sin2 A sin2 B sin2 C sin2 A sin2 B sin2 C b, M M 1 1 cos2 A cos2 B cos2C cos2 A cos2 B cos2C 0,5 3 2 2 2 3 M 1 cos A cos B cos C . Biến đổi về 0,25 cos2 A cos2 B cos2C M 1 3 cos2C cosC.cos(A B) 1 0 0,25 M 1 2 3 3 2 0,25 cos (A B) 4 1 0 4 1 cos (A B) 1 M 1 M 1 3 1 0,25 1 M 3 M 1 4 0,25 2 cos (A B) 1 0,25 0 M 3 1 A B C 60 cosC cos(A B) 2 0,25 Vậy MaxM = 3 khi tam giác ABC đều. 0,25 (C1) có tâm O(0;0),bán kính R1 13 (C2) có tâm I(6;0),bán kính R2 5. 0,25 Giao điểm của (C1) và (C2) là A (2;3) và B(2;-3).Với A có tung độ dương nên A(2;3) 1,0
- Với A có tung độ dương nên A(2;3) 0,25 Đường thẳng d qua A có pt:a(x-2)+b(y-3)=0 hay ax+by-2a-3b=0 Gọi d d(O,d);d d(I,d) 1 2 0,25 2 2 2 2 2 2 Yêu cầu bài toán trở thành: R2 d2 R1 d1 d2 d1 12 2 2 0,25 (4a 3b) (2a 3b) 2 b 0 2 2 2 2 12 b 3ab 0 a b a b b 3a *b=0 ,chọ a=1,suy ra pt d là:x-2=0 0,25 *b=-3a ,chọ a=1,b=-3,suy ra pt d là:x-3y+7=0 a, SA vuông góc với mp(ABCD) nên S 0,25 SA vuông góc với AB và AD. Vậy các tam giác SAB và SAD vuông tại A 0,25 Lại có SA vuông góc với (ABCD) và AB Vuông góc với BC nến SB vuông góc với BC 0,25 Vởy tam giác SBC vuông tại C. A 0,25 Tương tự tam giác SDC vuông tại D. b, Ta có BM =x nên CM = a- x D 0,25 AKD : DCM K 0,25 (vì có AKˆD DCˆM 900 , DAˆK CDˆM ) AK AD AD 0,25 AK DC. B M C DC DM DM 0,25 a2 = . Tam giác SAK vuông tại A nên 0,25 x2 2ax 2a2 2 2 0,25 2 2 x 2ax 3a SK SA AK a 2 2 . x 2ax 2a 0,25 a 6 SK nhỏ nhất khi và chỉ khi AK nhỏ nhất K O x 0 SK nhỏ nhất 2 0,25 Hết Ghi chú: - Nêú học sinh làm theo cách khác mà đúng vẫn cho điểm tối đa - Chỉ chấm bài hình khi học sinh vẽ hình đầy đủ và chính xác