Đề thi chọn học sinh giỏi môn Toán Lớp 7 - Năm học 2022-2023 - Phòng GD và ĐT Gia Viễn (Có đáp án)
a) Một cái hộp đựng 60 quả bóng giống nhau, gồm ba màu: màu đỏ, màu xanh và màu vàng. Trong đó có 18 quả bóng màu đỏ và 25 quả bóng màu vàng. Hỏi cần phải lấy ra ngẫu nhiên ít nhất bao nhiêu quả bóng để chắc chắn rằng lấy ra được 2 quả bóng xanh?
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi môn Toán Lớp 7 - Năm học 2022-2023 - Phòng GD và ĐT Gia Viễn (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_mon_toan_lop_7_nam_hoc_2022_2023_p.pdf
Nội dung text: Đề thi chọn học sinh giỏi môn Toán Lớp 7 - Năm học 2022-2023 - Phòng GD và ĐT Gia Viễn (Có đáp án)
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HSG LỚP 7 THCS HUYỆN GIA VIỄN NĂM HỌC 2022-2023 Môn: Toán ĐỀ THI CHÍNH THỨC Ngày thi: 30/3/2023 Thời gian làm bài:150 phút (không kể thời gian giao đề) Họ và tên thí sinh : Số báo danh Họ và tên, chữ ký: Giám thị thứ nhất: Giám thị thứ hai: Câu 1 (4,0 điểm) Tính giá trị các biểu thức sau: 33 0,375− 0,3 +− 7 5 7 12− 30 a) A =++ . b) B = 11 12 . 55 23 17 23 17 23 0,625− 0,5 +− 11 12 c) Ma=++3 b 2, c biết ab+=5; bc +=−8. Câu 2 (4,0 điểm) x yy z a) Tìm x, y, z biết: =, = và 2x− 3 yz +=− 6. 3 43 5 b) Tìm số nguyên x, y biết 2xy−+= x y 6. Câu 3 (4,0 điểm) a) Cho đa thức Q() x= ax2 ++ bx 4. c Chứng minh rằng nếu đa thức Qx() nhận 2 và -2 là nghiệm thì a và c là hai số đối nhau. 2023 2023 ac (ab−−) ( cd) b) Cho = , với b≠≠≠0, d 0; cd . Chứng minh rằng = . bd ab2023−− 2023 cd 2023 2023 c) Chứng tỏ rằng tích của hai số nguyên lẻ liên tiếp cộng thêm 9 thì chia hết cho 4. Câu 4 (6,0 điểm) Cho ∆ABC vuông tại A (AB KM. c) Từ E kẻ đường thẳng vuông góc với BC tại P và cắt BH tại N. Chứng minh ba điểm D, M, N thẳng hàng. d) Giả sử ACB = 360 , tia phân giác của ACB cắt AD tại F. Chứng minh tam giác CEF là tam giác cân. Câu 5 (2,0 điểm) a) Một cái hộp đựng 60 quả bóng giống nhau, gồm ba màu: màu đỏ, màu xanh và màu vàng. Trong đó có 18 quả bóng màu đỏ và 25 quả bóng màu vàng. Hỏi cần phải lấy ra ngẫu nhiên ít nhất bao nhiêu quả bóng để chắc chắn rằng lấy ra được 2 quả bóng xanh? 1 b) Tìm giá trị nhỏ nhất của biểu thức P=6. y −+ xx2 −4 + 7. 8 Hết
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẤM HUYỆN GIA VIỄN ĐỀ THI CHỌN HSG LỚP 7 THCS NĂM HỌC 2022-2023 Môn: Toán Ngày thi 30/3/2023 (Hướng dẫn chấm này gồm 04 trang) Câu Nội dung Điểm a) (1,5 điểm) 7 5 7 12−− 30 7 5 12 30 0,5 a) A = + + = . ++ 23 17 23 17 23 23 17 17 23 7−− 30 23 1,0 =+==−.1 1. 23 23 23 b) (1,5 điểm) Câu 1: 3333 3 3 11 1 1 0,375− 0,3 +− −+− 3.−+− (4,0 điểm) 8 10 11 12 3 1,5 b) B = 11 12 = 8 10 11 12 = = . 555555 11 1 1 5 0,625− 0,5 +− −+− 5.−+− 11 12 8 10 11 12 8 10 11 12 c) (1,0 điểm) Ta có: Mabcabbc=++=+++32( ) 22 02,5 M=++( ab) 2( bc +) 0,25 Thay ab+=5; bc +=−8 vào M=++( ab) 2( bc +) ta được: 0,5 M =5 + 2( − 8) = 5 +−( 16) =− 11 a) (2,0 điểm) xy x y yz y z 0,5 a) =⇒= (1); =⇒= (2) 3 4 9 12 3 5 12 20 xy z 0,5 Từ (1) và (2) ta có = = . 9 12 20 x y z2 x 3 y z 23 x−+ yz −6 0,5 = = = = = = = = −3 9 12 20 18 36 20 18−+ 36 20 2 Tìm được x = -27; y =- 36; z = -60. 0,5 b) (2,0 điểm) 2xy−+= x y 6. ⇒4xy − 2 x + 2 y = 12 ⇒ 2 x( 2 y −+ 1) ( 2 y −= 1) 12 − 1 Câu 2: 0,5 (4,0 điểm) ⇒(2xy + 1)( 2 −= 1) 11 ⇒2yx − 1; 2 +∈ 1 Ư(11) ⇒2yx − 1; 2 +∈± 1{ 1; ± 11} 0,5 Giải tìm được 4 cặp số nguyên (x; y) thỏa mãn là: 1,0 (0;6) ;(−− 1; 5) ;( 5;1) ;( − 6;0) . x + 6 0,5 Cách 2: 2xy−+=⇒ x y 6 y( 21 x +) =+⇒= x 6 y ∈ Z 21x + ⇒+xx6212( +⇒) ( x +− 6) ( 21211121 x +)( x +⇒) ( x +) 0,5
- ⇒21x +∈ Ư(11) ⇒2x +∈± 1{ 1; ± 11} 1,0 Giải tìm được 4 cặp số nguyên (x; y) thỏa mãn là: (0;6) ;(−− 1; 5) ;( 5;1) ;( − 6;0) . a) (1,5 điểm) Vì Q() x= ax2 ++ bx 4 c nhận 2 và -2 là nghiệm nên 0,5 QQ(2)= 0; ( −= 2) 0. Ta có: Q(2)= a .22 + b .2 +=++= 4 c 4 abc 2 4 0 0,5 −=−+−+=−+=2 Q( 2) a .( 2) b .( 2) 4 c 4 abc 2 4 0 ⇒+++−+=⇒+=4244240880abcabc ac 0,25 ⇒8(ac + ) =⇒+= 0 ac 0 Câu 3: 0,25 (4,0 điểm) ⇒ a và c là hai số đối nhau. b) (1,5 điểm) Với b≠≠≠0, d 0; cd , thì ac a b ab− 0,5 = ⇒ == (1) bd c d cd− 2023 ab2023 2023 (ab− ) ⇒ == 2023 (2) 0,5 cd2023 2023 (cd− ) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: 2023 a2023 b 2023 (ab− ) ab2023− 2023 = 2023== 2023 2023 2023 2023 c d (cd− ) cd− 0,5 2023 2023 (ab−−) ( cd) ⇒= ab2023−− 2023 cd 2023 2023 c) (1,0 điểm) Gọi hai số nguyên lẻ liên tiếp là 21a + và 21a − (aZ∈ ) 0,25 Tích của hai số nguyên lẻ liên tiếp cộng thêm 9 bằng: 0,25 (2aa+ 12)( −+ 1) 9 =4a2 − 2 aa + 2 −+ 19 0,25 =48a2 + =4.(a2 + 2) 4 Vậy tích của hai số nguyên lẻ liên tiếp cộng thêm 9 thì chia hết cho 4. 0,25
- Câu 4: 0,5 (6,0 điểm) a) (1,5 điểm) Chứng minh ∆=∆HBD KCD (cạnh huyền – góc nhọn) ⇒=HD KD 0,75 Chứng minh ∆=∆DBK DCH (c-g-c) ⇒=BK CH 0,75 b) (2,0 điểm) Chứng minh: AM= MC ⇒∆ AMC cân tại M 0,5 Chứng minh: ∆AMC cân tại M, có DM là đường cao nên đồng thời là trung 0,5 tuyến. Suy ra M là trung điểm của AC. 1 Xét ∆ACK vuông tại K, có KM là trung tuyến nên KM= AC (1) 2 0,5 1 Mà CD= BC (2) 2 Lại có ∆ABC vuông tại A ⇒>BC AC (3) 0,5 Từ (1), (2) và (3) ⇒>CD KM. c) (1,0 điểm) Chứng minh BE // AC 0,25 Xét ∆BEN có hai đường cao BP và EH cắt nhau tại D nên điểm D là trực 0,25 tâm của ∆BEN ⇒⊥ND BE (4) Lại có DM⊥ AC (gt) , mà BE // AC ⇒⊥NM BE (5) 0,25 Từ (3), (4) và (5) suy ra ba điểm D, M, N thẳng hàng. 0,25 d) (1,0 điểm) ∆ABC vuông tại A, ACB = 360 nên ABC = 540 O 0,25 Có ∆=∆ABD ECD ⇒== ABD ECD 54 Do đó ACE=+= ACB BCE 90O Từ ∆=∆ABC CEA ⇒== ACB CAE 36O 0,25 Mặt khác, CF là phân giác ACB nên ACF= DCF =18O CFE là góc ngoài của ∆ACE nên CFE = ACF + EAC =+=1800 36 54o 0,25 Tính được CEF = 54O ⇒==CEF CFE 54O ⇒∆CEF cân tại C. 0,25 a) (1,0 điểm) Số quả bóng màu xanh là: 60 - 18 - 25 = 17 (quả). 0,25
- Trường hợp xấu nhất: Ta lấy ra được 25 quả bóng màu vàng, 18 bóng 0,5 màu đỏ và 1 quả bóng màu xanh. Khi đó, ta cần lấy thêm 1 quả bóng nữa thì chắc chắn có được 2 quả bóng màu xanh. Vậy cần lấy ít nhất là: 25 + 18 + 1 + 1 = 45 quả bóng để thỏa mãn yêu cầu bài toán. 0,25 b) (1,0 điểm) 1 Câu 5: P=6. y −+ xx2 −4 + 7. Ta có: (2,0 điểm) 8 1 0,25 6.yy−≥∀ 0, 8 x22−4 x += 7 x − 2 x − 2 x ++= 43 xx( − 22) −( x − 23) + 0,25 2 2 =( xx −2) .( − 2) += 3( x − 2) +> 3 0, ∀x (vì ( x −2) ≥∀ 0, x ) 0,25 1 1 6.y −= 0 y = ⇒≥P 3, ∀x,y. Dấu “=” xảy ra khi: 8 ⇒ 8 2 x = 2 ( x −=20) 1 0,25 y = Vậy giá trị nhỏ nhất của biểu thức P là 3 khi 8 x = 2 Lưu ý: - Lời giải trong hướng dẫn chấm chỉ trình bày tóm tắt, học sinh trình bày hoàn chỉnh, lý luận chặt chẽ mới cho điểm tối đa. - Học sinh có thể trình bày nhiều cách giải khác nhau nếu đúng thì cho điểm tương ứng.