Đề thi học sinh giỏi môn Toán Lớp 6 - Đề số 1 (Có đáp án)
Câu 5. ( 1,5 điểm)
a) Tìm ƯCLN( 7n +3, 8n - 1) với (n €N*). Tìm điều kiện của n để hai số đó nguyên tố cùng nhau.
b) Tìm hai số tự nhiên biết: Hiệu của chúng bằng 84, ƯCLN của chúng bằng 28 và các số đó trong khoảng từ 300 đến 440.
a) Tìm ƯCLN( 7n +3, 8n - 1) với (n €N*). Tìm điều kiện của n để hai số đó nguyên tố cùng nhau.
b) Tìm hai số tự nhiên biết: Hiệu của chúng bằng 84, ƯCLN của chúng bằng 28 và các số đó trong khoảng từ 300 đến 440.
Bạn đang xem tài liệu "Đề thi học sinh giỏi môn Toán Lớp 6 - Đề số 1 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_hoc_sinh_gioi_mon_toan_lop_6_de_so_1_co_dap_an.docx
Nội dung text: Đề thi học sinh giỏi môn Toán Lớp 6 - Đề số 1 (Có đáp án)
- ĐỀ 1 Câu 1. ( 2,0 điểm) Cho A = 2 + 22 + 23 + 24 + . . . + 220. Tìm chữ số tận cùng của A. Câu 2. ( 1,0 điểm) Số tự nhiên n có 54 ước. Chứng minh rằng tích các ước của n bằng n27. Câu 3. ( 1,5 điểm) Chứng minh rằng: n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n. Câu 4. ( 1,0 điểm) Tìm tất cả các số nguyên tố p và q sao cho các số 7p + q và pq + 11 cũng là các số nguyên tố. Câu 5. ( 1,5 điểm) a) Tìm ƯCLN( 7n +3, 8n - 1) với (n €N*). Tìm điều kiện của n để hai số đó nguyên tố cùng nhau. b) Tìm hai số tự nhiên biết: Hiệu của chúng bằng 84, ƯCLN của chúng bằng 28 và các số đó trong khoảng từ 300 đến 440. Câu 6. ( 1,0 điểm) Tìm các số nguyên x, y sao cho: xy – 2x - y = -6. Câu 7. ( 2,0 điểm) Cho xAy, trên tia Ax lấy điểm B sao cho AB = 5 cm. Trên tia đối của tia Ax lấy điểm D sao cho AD = 3 cm, C là một điểm trên tia Ay. a. Tính BD. b. Biết . c. Biết AK = 1 cm (K thuộc BD). Tính BK.
- Đáp án đề thi học sinh giỏi môn Toán lớp 6 Câu Đáp án Điểm A. 2 = (2 + 22 + 23 + 24 + . . . + 220.). 2 = 22 + 23 + 24 + 25 + . . . + 21 2 . 0,5 Nên A.2 - A = 221 -2 0,5 Câu 1 A = 221 - 2 (2,0 điểm) Ta có : 221 = 24.5+1 = (24)5 . 2 = 165 .2 5 5 16 có tận cùng là 6 . Nên 16 . 2 có tận cùng là 6. 2 có tận 0,5 cùng là 2. 0,5 Vậy A có tận cùng là 2. Số tự nhiên n có 54 ước. Chứng minh rằng tích các ước của n bằng n27. 0,25 Câu 2. 0,25 (1,0 điểm) 0,25 0,25 Với mọi số tự nhiên n ta có các trường hợp sau: TH1: n chia hết cho 5 thì tích chia hết cho 5. 0,25 TH 2: n chia cho 5 dư 1 thì n = 5k +1 4n +1= 20k + 5 chia hết cho 5 tích chia hết cho 5. 0,25 Câu 3 TH3: n chia cho 5 dư 2 thì n = 5k +2 (1,5 điểm) 2n +1= 10k + 5 chia hết cho 5 tích chia hết cho 5. 0,25 TH4: n chia cho 5 dư 3 thì n = 5k +3 3n +1= 15k + 10 chia hết cho 5 tích chia hết cho 5. 0,25 TH 5: n chia cho 5 dư 4 thì n = 5k +4 n +1= 5k + 5 chia hết cho 5 tích chia hết cho 5. 0,25 Vậy : n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n. 0,25
- Nếu pq + 11 là số nguyên tố thì nó phải là số nguyên tố lẻ ( vì pq + 11 > 2) pq là số chẵn ít nhất 1 trong 2 số phải chẵn, tức là bằng 2. 0,25 + Giả sử p = 2. Khi đó 7p + q = 14 + q ; pq + 11 = 2q + 11. Câu 4 Thử q = 2( loại) 0,25 q = 3( t/m) (1,0 điểm) q > 3 có 1 số là hợp số. p = 2 và q = 3. 0,25 + Giả sử q = 2. Giải TT như trên ta được p = 3. Vậy p = 2; q = 3 hoặc p = 3; q = 2. 0,25 a) Gọi ƯCLN( 7n +3, 8n - 1) = d với (n €N*) Ta có: 7n +3 d, 8n - 1 d. 8.( 7n +3) – 7.( 8n - 1) d 31 d d = 1 hoặc 31. 0,25 Để hai số đó nguyên tố cùng nhau thì d ≠ 31. Mà 7n + 3 31 7n + 3 - 31 31 7(n - 4) 31 n – 4 31( vì 7 và 31 nguyên tố cùng nhau) n = 31k + 4( với k là số tự nhiên) Do đó d ≠ 31 n ≠ 31k + 4. Vậy hai số 7n +3, 8n – 1 nguyên tố cùng nhau khi n ≠ 31k + 4( với k là 0,25 số tự nhiên). 0,25 b) Gọi hai số phải tìm là a và b ( a, b N* , a > b) Ta có: ƯCLN(a, b) = 28 nên a = 28k và b = 28q . Trong đó k, q N*và Câu 5 k, q nguyên tố cùng nhau. (1,5 điểm) Ta có : a - b = 84 0,25 k - q = 3 Theo bài ra: 300 ≤ b < a ≤ 440 10 < q < k <16. Chọn hai số có hiệu bằng 3 trong khoảng từ 11 đến 15 là 11 và 14; 12 và 15. Chỉ có 11 và 14 là hai số nguyên tố cùng nhau. nên q = 11và k = 14. Ta có : a = 28. 11 = 308 ; b = 28. 14 = 392 Vậy hai số phải tìm là 308 và 392. 0,25 0,25 xy – 2x - y = -6 (x – 1)( y - 2) = -4. Với x, y là số nguyên, ta có bảng: 0,5 Câu 6 x - 1 -1 1 -2 2 -4 4 (1,0 điểm) y - 2 4 -4 2 -2 1 -1 x 0 2 -1 3 -3 5
- y 6 -2 4 0 3 1 Vậy các số x, y thỏa mãn là: ( x,y) {( 0;6); (2;-2); (-1;4) } 0,5 0,25 a) Tính BD Vì B thuộc tia Ax, D thuộc tia đối của tia Ax A nằm giữa D và B BD = BA + AD = 5 + 3 = 8 (cm) 0,25 b) Biết BCD = 850, BCA = 500. Tính ACD Câu 7 Vì A nằm giữa D và B => Tia CA nằm giữa 2 tia CB và CD (2,0 điểm) => ACD + ACB = BCD => ACD = BCD - ACB = 850 - 500 = 350 0,5 c) Biết AK = 1 cm (K thuộc BD). Tính BK * Trường hợp 1: K thuộc tia Ax - Lập luận chỉ ra được K nằm giữa A và B - Suy ra: AK + KB = AB KB = AB – AK = 5 – 1 = 4 (cm) 0, 5 * Trường hợp 2: K thuộc tia đối của tia Ax - Lập luận chỉ ra được A nằm giữa K và B - Suy ra: KB = KA + AB KB = 5 + 1 = 6 (cm) * Kết luận: Vậy KB = 4 cm hoặc KB = 6 cm 0, 5 (Bài thi của thí sinh giải theo cách khác đúng vẫn cho điểm tối đa)