Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 8 (Có hướng dẫn chấm)
Câu 4: (6,0 điểm)
Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC.
a) Chứng minh rằng: DADC = DABE.
b) Chứng minh rằng: Góc DIB = 600.
c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng tam giác AMN đều.
Bạn đang xem tài liệu "Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 8 (Có hướng dẫn chấm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_khao_sat_hoc_sinh_gioi_cap_huyen_toan_lop_7_de_8_co_huong.docx
Nội dung text: Đề khảo sát học sinh giỏi cấp huyện Toán Lớp 7 - Đề 8 (Có hướng dẫn chấm)
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 7 CẤP HUYỆN Môn: Toán – Lớp 7 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) ĐỀ 8 Câu 1: (4,5 điểm). 4 2 2 3 3 2 a) Tính giá trị của biểu thức A : : 7 5 3 7 5 3 1 b) Tính giá trị của biểu thức B = 2x2 – 3x + 1 với x . 2 x y y z c) Tìm 3 số x, y, z biết rằng: ; và x + y + z = - 110. 3 7 2 5 Câu 2: (4,5 điểm). a) Tìm tập hợp các số nguyên x, biết rằng: 5 5 1 31 1 4 : 2 7 x 3 :3,2 4,5.1 : 21 9 18 5 45 2 1 1 1 1 1 b) T×m x, biÕt: x x x x x 11x 2 6 12 20 110 c) Tính giá trị của biểu thức:C = 2x5 – 5y3 + 2015 tại x, y thỏa mãn: x 1 + (y + 2)20 = 0 Câu 3: (3,5 điểm). a) Tìm số tự nhiên có ba chữ số, biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1: 2: 3. b) Tìm tất cả các số tự nhiên a, b sao cho : 2a + 37 = b 45 + b - 45. Câu 4: (6,0 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Chứng minh rằng: D· IB = 600. c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. d) Chứng minh rằng IA là phân giác của góc DIE. Câu 5: (1,5 điểm) Cho 20 số nguyên khác 0 : a1, a2, a3, , a20 có các tính chất sau: * a1 là số dương. * Tổng của ba số viết liền nhau bất kì là một số dương.
- * Tổng của 20 số đó là số âm. Chứng minh rằng : a1.a14 + a14a12 < a1.a12. Hết Giám thị xem thi không giải thích gì thêm! Họ và tên thí sinh:: SBD Giám thị 1: Giám thị 2: PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT HỌC SINH GIỎI LỚP 7 CẤP HUYỆN Môn: Toán – Lớp 7 Thời gian làm bài: 120 phút (Không kể thời gian giao đề) HƯỚNG DẪN CHẤM ĐỀ 8 Nội dung Điểm 4 2 2 3 3 2 A : : 7 5 3 7 5 3 4 2 3 3 2 0,75 đ a = : 7 5 7 5 3 (1,5) 0,5đ 4 3 2 3 2 2 : 0: 0 7 7 5 5 3 3 0,25đ Vậy : A = 0 1 1 1 0,75 đ Vì x nên x = hoặc x = - 2 2 2 1 1 1 2 0,25đ CÂU 1 Với x = thì: A = 2.( ) – 3. + 1 = 0 b 2 2 2 (4,5đ) (1,5) 1 1 1 Với x = - thì: A = 2.(- )2 – 3.(- ) + 1 = 3 đ 2 2 2 0,25 1 1 Vậy : A=0 với x = và A=3 với x = - 0,25đ 2 2 x y x y y z y z x y z 0,5đ Từ ; . Suy ra 3 7 6 14 2 5 14 35 6 14 35 Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: c x y z x y z 110 (1,5) = -2 0,5đ 6 14 35 6 14 35 55 0,25đ Suy ra x = -2.6 = -12; y = -2.14 = -28; z = -2.35 = - 70. 0,25đ Vậy:x = -12; y = -28; z = - 70.
- 5 5 41 18 0,5đ 2) Ta có: 4 : 2 7 . 7 2 7 5 9 18 9 41 Lạicó: a 1 31 1 16 5 9 76 43 38 2 43 2 2 0,5đ (1,5) 3 :3,2 4,5.1 : 21 . . : 1 . . 5 45 2 5 16 2 45 2 5 43 5 43 5 2 0,5đ Do đó: - 5 < x < mà x Z nên x {-4; -3; -2; -1} 5 a) NhËn xÐt: VÕ tr¸i cña ®¼ng thøc lu«n 0 nªn vÕ ph¶i 0 suy ra 11x 0 hay x 0. 0,75đ víi x 0 ta cã: 1 1 1 1 1 x x x x x 11x CÂU 2 2 6 12 20 110 (4,5đ) b 1 1 1 1 1 0,75đ (2,0) x x x x x 11x 2 6 12 20 110 0,25đ 1 10 suy ra x = 1- = (TM) 11 11 0,25đ 10 Vậy:x = 11 1) Do x 1 ≥ 0; (y + 2)20 ≥ 0 x 1 + (y + 2)20 ≥ 0 với mọi x, y. 0,25 đ 20 20 Kết hợp x 1 + (y + 2) = 0 suy ra x 1 = 0 và (y + 2) = 0 đ c 0,25 x = 1; y = - 2. (1,0) Giá trị của biểu thức :C=2x5 – 5y3 + 2015 tại x = 1; y = - 2 0,25 đ là:C=2.15 – 5.(-2)3 + 2015 = 2 + 40 + 2015 = 2057 0,25đ Vậy C=2057 Gọi a, b, c là các chữ số của số có ba chữ số cần tìm. Không mất tính tổng quát, giả sử a b c 9. 0,25 đ Ta có 1 a + b + c 27 . Mặt khác số cần tìm là bội của 18 nên là bội của 9, do đó a + b + c = 9 hoặc a + b + c = 18 hoặc a + b + c = 27. 0,5 đ a b c a b c a Theo đề bài ta có: ; 0,25 đ (1,5) 1 2 3 6 CÂU 3 Như vậy a + b + c chia hết cho 6, nên a + b + c = 18. (3,5đ) 0,25 đ Từ đó suy ra a = 3, b = 6, c = 9. Do số phải tìm là bội của 18 nên chữ số hàng đơn vị chẵn, 0,25 đ vì vậy hai số cần tìm là: 396; 936. b Nhận xét: Với x ≥ 0 thì x + x = 2x 0,5 đ (2,0) Với x < 0 thì x + x = 0. Do đó x + x luôn là số chẵn với x Z.
- Áp dụng nhận xét trên thì b 45 + b – 45 là số chẵn với b Z. 0,25 đ a a 0,25 đ Suy ra 2 + 37 là số chẵn 2 lẻ a = 0 . 0,25 đ Khi đó b 45 + b – 45 = 38 0,25 đ + Nếu b < 45, ta có - (b – 45) + b – 45 = 38 0 = 38 (loại) 0,25 đ + Nếu b ≥ 45 , ta có 2(b – 45) = 38 b – 45 = 19 b = 64 (TM) 0,25 đ vậy (a; b) = (0; 64) E A D a K (1,0) I C B 0,75 đ 0,25 đ Ta có: AD = AB; D· AC B· AE và AC = AE Suy ra ADC = ABE (c.g.c) CÂU 4 Từ ADC = ABE (câu a) A· BE A· DC , 0,5 đ 0,5 đ (6,0đ) b · · (1,5) mà BKI AKD(đối đỉnh). 0,5 đ Khi đó xét BIK và DAK suy ra B· IK D· AK = 600 (đpcm) E A D J N c K M (1,5) I C B 0,5 đ Từ ADC = ABE (câu a) CM = EN và A· CM A· EN 0,5 đ 0,5 đ ACM = AEN (c.g.c) AM = AN và C· AM E· AN M· AN C· AE = 600. Do đó AMN đều.
- d Trên tia ID lấy điểm J sao cho IJ = IB BIJ đều BJ = BI và J¶BI D· BA (2,0) = 600 suy ra I·BA J·BD , kết hợp BA = BD IBA = JBD (c.g.c) A· IB D· JB = 1200 mà B· ID = 600 D· IA = 600. Từ đó suy ra IA là phân giác của góc DIE Ta có : a1 + (a2 + a3 + a4) + + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) 0 ; a2 + a3 + a4 > 0 ; ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0,5 đ 0 ; a + a + a > 0 => a a13 + a14 0 => a12 > 0. 0,25 đ Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 a1.a14 + a14a12 < a1.a12 (đpcm). 0,25 đ Chú ý: +)Nếu HS làm theo cách khác đúng vẫn cho điểm tối đa. +)Nếu HS thiếu đáp số trừ 0,25 điểm. +)Câu 2a);3a) Nếu thiếu 1 giá trị trừ 0,1 điểm. +)Câu 2b);3b) Không kiểm tra điều kiện trừ 0,1 điểm.