Đề thi chọn đội tuyển dự thi học sinh giỏi quốc gia Lớp 12 THPT năm học 2020-2021 môn Toán - Sở giáo dục và đào tạo Phú Thọ
Bài 4. (5,0 điểm)
Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x; y) thỏa mãn đồng thời hai điều kiện:
i) x, y .
ii) 0 y x 2020 .
a) Tính số phần tử của S.
b) Hỏi có bao nhiêu tập con A gồm 2020 phần tử của S sao cho A không chứa hai điểm x1; y1 ;x2 ; y2 thỏa mãn:
x1 x2 y1 y2 0 ?
Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x; y) thỏa mãn đồng thời hai điều kiện:
i) x, y .
ii) 0 y x 2020 .
a) Tính số phần tử của S.
b) Hỏi có bao nhiêu tập con A gồm 2020 phần tử của S sao cho A không chứa hai điểm x1; y1 ;x2 ; y2 thỏa mãn:
x1 x2 y1 y2 0 ?
Bạn đang xem tài liệu "Đề thi chọn đội tuyển dự thi học sinh giỏi quốc gia Lớp 12 THPT năm học 2020-2021 môn Toán - Sở giáo dục và đào tạo Phú Thọ", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_chon_doi_tuyen_du_thi_hoc_sinh_gioi_quoc_gia_lop_12_t.pdf
Nội dung text: Đề thi chọn đội tuyển dự thi học sinh giỏi quốc gia Lớp 12 THPT năm học 2020-2021 môn Toán - Sở giáo dục và đào tạo Phú Thọ
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN ĐỘI TUYỂN PHÚ THỌ DỰ THI HỌC SINH GIỎI QUỐC GIA LỚP 12 THPT NĂM HỌC 2020 – 2021 ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi thứ nhất: 24/09/2020 Thời gian làm bài: 180 phút (không kể thời gian phát đề) Đề thi gồm có 01 trang Bài 1. (5,0 điểm) 3xz 2y (ab ) Cho ab, , a b. Giải hệ phương trình: 3x2 3xz y2 2(a b) y ab . 322 x 3xz yab ( )2 yab Bài 2. (5,0 điểm) Cho dãy số thực dương a thỏa mãn điều kiện: a a a a a 4a, n * . n n 1 12n n 1n 2n 1 * Chứng minh rằng a1 a2 an an 1, n . Bài 3. (5,0 điểm) Giả sử O, I lần lượt là tâm đường tròn ngoại tiếp, nội tiếp tam giác ABC với bán kính R, r tương ứng. Gọi P là điểm chính giữa cung BAC , QP là đường kính của O , D là giao điểm của PI và BC, F là giao điểm của đường tròn ngoại tiếp tam giác AID với đường thẳng PA. Lấy E trên tia DP sao cho DE DQ . a) Chứng minh rằng IDF 900 . 2r b) Giả sử AEF APE , chứng minh rằng sin2 BAC . R Bài 4. (5,0 điểm) Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (;x y ) thỏa mãn đồng thời hai điều kiện: i) xy, . ii) 0 y x 2020 . a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập con A gồm 2020 phần tử của S sao cho A không chứa hai điểm x1;y1 ; xy2;2 thỏa mãn: x1 x2 y1 y2 0 ?