Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 12 - Năm học 2023-2024 - Sở GD và ĐT Bà Rịa - Vũng Tàu (Có đáp án)
2. Gọi S là tập hợp tất cả ước nguyên dương của số a = 648000. Chọn ngẫu nhiên hai phần tử
khác nhau của S. Tính xác suất để hai số được chọn đều không chia hết cho 3.
khác nhau của S. Tính xác suất để hai số được chọn đều không chia hết cho 3.
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 12 - Năm học 2023-2024 - Sở GD và ĐT Bà Rịa - Vũng Tàu (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_cap_tinh_mon_toan_lop_12_nam_hoc_2.pdf
Nội dung text: Đề thi chọn học sinh giỏi cấp tỉnh môn Toán Lớp 12 - Năm học 2023-2024 - Sở GD và ĐT Bà Rịa - Vũng Tàu (Có đáp án)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 12 CẤP TỈNH TỈNH BÀ RỊA – VŨNG TÀU NĂM HỌC 2023 – 2024 ĐỀ THI CHÍNH THỨC MÔN : TOÁN Thời gian làm bài : 180 phút Ngày thi : 19/12/2023 (Đề thi gồm có 01 trang) Bài 1 (3,0 điểm). 2 1. Giải phương trình sin2 x++ sin x 3sin 2 x =( sin x + cos x) − cos xx( cos + 3) . 2. Gọi S là tập hợp tất cả ước nguyên dương của số a = 648000. Chọn ngẫu nhiên hai phần tử khác nhau của S. Tính xác suất để hai số được chọn đều không chia hết cho 3. Bài 2 (3,5 điểm). Giải các phương trình sau: xx2 +−3 1. 3xxx32− 10 + 11 −= 3 33 . 3 2 2. 4log22x+ x log ( x += 2) 2log 2 xx .[ + log 2 ( x + 2)] . Bài 3 (5,5 điểm). cotx − 3 ππ 1. Tìm tất cả giá trị thực của tham số m để hàm số y = nghịch biến trên khoảng ;. cot xm+ 42 21x + 2. Cho hàm số y = có đồ thị (C) và đường thẳng (d) : y=−+ 3. xm Tìm tất cả giá trị thực x −1 của tham số m để (d ) cắt (C) tại hai điểm AB, và (d ) lần lượt cắt trục hoành, trục tung tại hai điểm CD, mà diện tích tam giác OCD gấp đôi diện tích tam giác OAB (trong đó O là gốc tọa độ). 3. Với hai số thực ab, thay đổi trên đoạn [1; 3] , tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu a22 b ab thức P =++96. . b22 a a 2++ ab b 2 Bài 4 (5,0 điểm). Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật tâm O và AB=2, a AD = a . Hình chiếu vuông góc của S trên mặt phẳng ( ABCD) là trung điểm H của OA. Gọi MN, lần lượt là trung điểm của SB,. AD Biết rằng góc giữa hai mặt phẳng (SBC) và ( ABCD) là 450 . 1. Tính thể tích khối chóp S ABCD 2. Cho điểm Q trên đoạn thẳng SA mà QS= 2. QA Tính thể tích khối đa diện ABCNQM. 3. Tính khoảng cách giữa hai đường thẳng SN,. CM Bài 5 (3,0 điểm). + 1. Tìm tất cả bộ hai số thực ( xy, ) thỏa mãn đẳng thức xxlog2 x ++−4yy( 5) 21 + 57 = 18 x . 2. Cho ba số thực xyz,, không âm sao cho không có hai số nào cùng bằng 0. Chứng minh rằng 2 1 1 36 63 ( xyz++) +2 22+ ≥ . 2xy+ yz + zx x +++ y z 14 HẾT Lưu ý : Thí sinh được sử dụng máy tính cầm tay. Họ và tên thí sinh : ; Số báo danh : Chữ ký của CBCTh số 01 :
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 CẤP TỈNH TỈNH BÀ RỊA – VŨNG TÀU NĂM HỌC 2023 – 2024 HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC MÔN : TOÁN (Hướng dẫn chấm gồm có 07 trang) Bài 1 (3,0 điểm). 2 1. Giải phương trình sin2 x++ sin x 3sin 2 x =( sin x + cos x) − cos xx( cos + 3) . 2. Gọi S là tập hợp tất cả ước nguyên dương của số a = 648000. Chọn ngẫu nhiên hai phần tử khác nhau của S. Tính xác suất để hai số được chọn đều không chia hết cho 3. Câu Nội dung Điểm 2 sin2 x++ sin x 3sin 2 x =( sin x + cos x) − cos xx( cos + 3) ⇔sin22x ++ sin x 6sin xx cos =+ 1 2sin xx cos − cos x − 3 cos x 0,25 ⇔3 cosx +=− sin x 4sin xx cos 0,25 31 0,25 ⇔cosxx +=− sin sin 2 x 22 π 0,25 ⇔sinxx += sin( − 2 ) 1. (1,5đ) 3 π x+=−+22 xkπ 3 0,25 ⇔ π x+=++ππ22 xk 3 ππk2 x =−+ 93 0,25 ⇔∈ ,.k 2π xk=−−2π 3 Ta có a =648000 = 5364 .2 .3 0,25 Mỗi ước nguyên dương của a đều có dạng 5i .2 jk .3 0,25 với ij∈∈{0,1,2,3} ;{ 0,1,2,3,4,5,6} ; k ∈{ 0,1,2,3,4}. Số ước nguyên dương của a bằng số bộ (i,, jk) với i,, jk thuộc các tập trên. 0,25 Do đó số phần tử của S là: 4.5.7= 140 số. 2. (1,5đ) 2 Khi đó: nC(Ω=) 140 . 0,25 Gọi A là biến cố “lấy được hai số từ S mà chúng đều không chia hết cho 3”. 0,25 Ước của a mà không chia hết cho 3 có dạng 5ij .2 .30 . Số ước của a không chia hết cho 3 là: 4.7= 28 số. 2 Khi đó: nA( ) = C28. 0,25 2 nA( ) C28 27 Vậy PA( ) = =2 = . nC(Ω) 140 695 1
- Bài 2 (3,5 điểm). Giải các phương trình sau: xx2 +−3 1. 3xxx32− 10 + 11 −= 3 33 . 3 2 2. 4log22x+ x log ( x += 2) 2log 2 xx .[ + log 2 ( x + 2)] . Câu Nội dung Điểm 2 32 xx+−3 3xxx− 10 + 11 −= 3 33 . 3 xx2 +−3 0,25 ⇔3(x32 − 3 x + 3 x − 1) + 3( x − 1) = xx2 +−+ 3 3 3 3 22 3 xx+−33 xx +− ⇔(xx − 1) + ( −= 1) +3 (*) 0,25 1. (1,5đ) 33 Xét hàm số ft()= t32 + t , f '() t = 3 t + 1 > 0 ∀∈ t ⇒ft()đồng biến trên . 0,25 xx22+−33xx+− Khi đó (*)⇔fx ( − 1) = f33⇔x −=1 0,25 33 2 3 xx+−3 ⇔−( x1) = ⇔3x32 − 10 xx += 8 0 3 0,25 x = 0 0,25 2 ⇔xx(3 − 10 x +=⇔= 8) 0 x 2 . 4 x = 3 Điều kiện: x > 0. 0,25 2 4log22x+ x log ( x += 2) 2log 2 xx .[ + log 2 ( x + 2)] . ⇔2 + +− − + = 4log22xx log ( x 2) 2 x log 22 x 2log ( x 2)log 2 x 0 ⇔2log22x( 2log xx−+) log 2 ( x + 2)( x − 2log2 x) = 0 0,25 ⇔(2log2xx −)[ 2log 22 x − log ( x += 2)] 0 2log22xx− log ( += 2) 0 (1) 0,25 ⇔ 2log2 xx−= 0 (2) 2. (2,0đ) 2 x = −1 0,25 Giải (1): (1) ⇔xx =+⇔2 . Kiểm tra điều kiện chọn x = 2. x = 2 lnx ln 2 0,25 Giải (2): (2)⇔=⇔x2 2x = x 2 ln x 1− ln x 0,25 Xét hàm fx()= trên (0;+∞) , có fx'( )= ; fx '( )=⇔= 0 x e x x2 2
- Bảng biến thiên x 0 e +∞ fx'( ) + 0 - 1 ≈ 0.368 e fx ( ) 0 −∞ 0,5 ln 2 Ta thấy ff(2)= (4) = . Do đó phương trình (2) có 2 nghiệm xx=2; = 4. 2 Vậy tập nghiệm phương trình đã cho là S = {2; 4} . Bài 3 (5,5 điểm). cotx − 3 ππ 1. Tìm tất cả giá trị thực của tham số m để hàm số y = nghịch biến trên khoảng ;. cot xm+ 42 21x + 2. Cho hàm số y = có đồ thị (C) và đường thẳng (d) : y=−+ 3. xm Tìm tất cả giá trị thực của x −1 tham số m để (d ) cắt (C) tại hai điểm AB, và (d ) lần lượt cắt trục hoành, trục tung tại hai điểm CD, mà diện tích tam giác OCD gấp đôi diện tích tam giác OAB (trong đó O là gốc tọa độ). 3. Với hai số thực ab, thay đổi trên đoạn [1; 3] , tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức a22 b ab P =++96. . b22 a a 2++ ab b 2 Câu Nội dung Điểm m + 31 0,5 Ta có y '= − 2 2 (cot xm+ ) sin x ππ 0,25 Hàm số nghịch biến trên khoảng ; 42 m + 31 ππ 1. (2,0đ) ⇔ 2 .− 0 ∀∈x ;*( ) (cot xm+ ) 42 ππ 0,25 Đặt t=cot xt ⇒∈( 0;1) khi x ∈;. 42 m >−3 0,25 m +>30 (*) ⇔⇔−≤m 0 −∉m (0;1) −≥m 1 3
- m >−3 0,5 −31 0 ⇔ 3−(mm + 1) + +≠ 10 2 m ⇔ 0( mm + 1)( − 11) >⇔ 0 m >11 2. (2,0đ) m +1 xx+= 12 3 Khi đó: Ax( ;3−+ x m) , Bx( ;3 −+ x m) và 11 2 2 m +1 0,25 xx = 12 3 m 0,25 ()d cắt Ox , Oy lần lượt tại hai điểm phân biệt CD,⇒ C ;0 , D( 0; m) 3 Tam giác OCD và tam giác OAB có cùng đường cao hạ từ O 0,25 22 nên S∆∆OCD=2 S OAB ⇔= CD 24 AB ⇔ CD = AB 22 mm22 2 0,25 ⇔ +=m2 49( xx −) +( xx −) ⇔ = 4( xx −) 9912 12 12 222 m 2 mm++11 m ⇔=4x + x − 4 xx ⇔= 44 − ( 1 2) 12 9 93 3 20+ 2 133 0,25 m = 2 3 ⇔3mm − 40 −=⇔ 44 0 . 20− 2 133 m = 3 20+− 2 133 20 2 133 Kiểm tra điều kiện ta chọn mm= ;.= 33 2 ab 1 Ta có P = + −+2 96 . ba ab ++1 0,25 ba ab 96 Đặt t = + ta được P==+− ft( ) t2 2. ba t +1 a 1 1 1 0,25 Do ab,∈[ 1;3] ⇒=∈ x ;3 . Khi đó t= gx( ) = x + với x ∈ ;3 . b 3 x 3 11x2 − gx'1( ) =−= . Phương trình gx'( ) =⇔= 0 x 1. xx22 0,25 4
- 1 10 10 Ta có : g(1) = 2; gg( 3) = = ⇒ miền giá trị của t là 2; . 33 3 3. (1,5đ) 48 2 3 ft'( ) =− 2 t =t( t +−1) 24 33( ) tt++11 ( ) ( ) 3 Phương trình ft'( ) =⇔ 0 t .( t += 1) 24 0,5 3 3 Dễ thấy t ⇒3 tt( + 1) > 24 nên phương trình có nghiệm duy nhất t = 3. 10 82 3 f(2) =+= 2 32 3; ff( 3) 55; =+⇒96 giá trị nhỏ nhất của biểu 3 9 13 0,25 thức là 55 và giá trị lớn nhất là 2+ 32 3. Bài 4 (5,0 điểm). Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật tâm O và AB=2, a AD = a . Hình chiếu vuông góc của S trên mặt phẳng ( ABCD) là trung điểm H của OA. Gọi MN, lần lượt là trung điểm của SB,. AD Biết rằng góc giữa hai mặt phẳng (SBC) và ( ABCD) là 450 . 1. Tính thể tích khối chóp S ABCD 2. Cho điểm Q trên đoạn thẳng SA mà QS= 2. QA Tính thể tích khối đa diện ABCNQM. 3. Tính khoảng cách giữa hai đường thẳng SN,. CM Câu Nội dung Điểm Kẻ HE⊥ BC tại E⇒= SEH (( SBC),( ABCD)) = 450 . 0,5 5
- HE CH 33 0,5 = =⇒=HE a. AB CA 42 3 0,5 1. (2,0 đ) Tam giác SHE vuông cân nên SH= HE = a. 2 2 SABCD = AB. AD = 2. a 1 13 0,5 Vậy thể tích khối chóp S. ABCD là V= SH. S = . a .2 a23 = a . 3ABCD 32 Gọi T là giao điểm của CN, AB⇒ A là trung điểm của TB⇒ Q là trọng tâm tam giác SBT⇒ T,, Q M thẳng hàng. 0,5 1 2. (1,5 đ) Ta có SS= và M là trung điểm SB⇒= V V . CBT ABCD MCBT2 S. ABCD V TA TN TQ 112 1 0,5 Theo công thức tỉ lệ thể tích thì TAQN = . .= = . VTBMC TB TC TM 223 6 55 5 0,5 ⇒==V VV = a3. ABCNQM6 MCBT 12 S. ABCD 12 Lấy K đối xứng với B qua C⇒⇒ CM|| SK CM ||( SNK ) . Khi đó d( CM; SN) = d( C ;.( SNK )) 0,5 Cho CA, KN cắt nhau tại FA⇒ là trung điểm FC và d( C;( SNK )) FC 88 ==⇒=d( C;( SNK)) d( H ;.( SNK )) d H; SNK FH 55 ( ( )) Kẻ HG, CI vuông góc với FK tại GI,. Kẻ HR⊥ SG tại R⇒⊥ HR( SNK ). 24 FK cắt CD tại P⇒= CP CD = a. 33 3. (1,5 đ) 0,5 1 1 1 25 4 Ta có = + = ⇒=CI a. CI222 CP CK16 a 2 5 GH 51 Dễ thấy =⇒=GH a. CI 82 1 1 1 40 3 Ta có = + = ⇒=HR a. HR2 HS 2 HG 229 a 2 10 0,5 8 6 10 Vậy d( CM;. SN) = HR = a 5 25 Bài 5 (3,0 điểm). + 1. Tìm tất cả bộ hai số thực ( xy, ) thỏa mãn đẳng thức : xxlog2 x ++−4yy( 5) 21 + 57 = 18 x . 2. Cho ba số thực xyz,, không âm sao cho không có hai số nào cùng bằng 0. Chứng minh rằng : 2 1 1 36 63 ( xyz++) +2 22+ ≥ . 2xy+ yz + zx x +++ y z 14 6
- Câu Nội dung Điểm Điều kiện : x > 0. 0,25 t 2 tlog2 x tt Đặt t=log2 xx ⇒= 2 ⇒ x =(2) = 2 t2 +4 22 tt2 22tlog2 x 2 Ta có : 2+≥ 16 2 2 .16 = 2.2 ≥ 2.2 = 2xx ⇒ ≥2 x − 16. 0,5 Từ giả thiết được 18xx≥ 22 ++ 4y 2 x .2 yy − 10.2 + 41 2 1. (1,5 đ) ⇒18xx ≥+ 2yy +− x2 10.2 + 41 ( ) 2 ⇒+( x2yy) − 10( x + 2) ++−+≤ 25 xx2 8 16 0 0,5 2 2 ⇒+−( xx25y ) +−( 4) ≤ 0 x +2y −= 50 x = 4 Do đó ⇔ . Vậy có duy nhất cặp số ( xy;) = ( 4;0) thỏa 0,25 x −=40 y = 0 mãn yêu cầu của bài toán. Không giảm tổng quát giả sử y nhận giá trị ở giữa xz,0⇒−( yxyz)( −≤) 2 22 2 0,5 ⇒+≤+⇒y xz xy yz y z + z z ≤ xyz + yz 2 22 2 2 2 2 2 Do đó xy+ yz + zx ≤ xy + xyz + yz = yx( ++ xz z) ≤ yxz( +) . 3 28yxzxz++++ 3 Ta có 2.yxzxz( +)( +) ≤=( xyz ++) 0,25 3 27 4 3 ⇒xy2 + yz 22 + zx ≤( x ++ y z) 2. (1,5 đ) 27 Đặt t=++ x y zt( >0) và ký hiệu P là vế trái của bài toán thì 0,25 221 27 36 1 27 36 Pt≥ + + =t ++ 24t3 t++ 12 4 tt 1 1 27 1 1 27 27t3 9 0,25 Áp dụng bất đẳng thức Cô si thì t2+= tt 22 + +≥33 =t 24444tt 644 9 36 9 36 9 9 36 9 63 0,25 Do đó Pt≥ + =( t ++1) −≥2(t + 1.) −= . 4tt++ 14 14 4 t + 14 4 HẾT 7