Đề thi chọn học sinh giỏi cấp tỉnh môn Toán (GDTX) Lớp 12 - Năm học 2023-2024 - Sở GD và ĐT Hải Dương (Có đáp án)

Câu 5 (1,0 điểm)

Một người đàn ông muốn xây bể bơi cho trẻ em có thể tích 18m3và thiết kế bể là hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng. Tính độ sâu của bể để diện tích gạch lát đáy và thành bể nhỏ nhất.

pdf 7 trang Hải Đông 30/01/2024 3520
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi cấp tỉnh môn Toán (GDTX) Lớp 12 - Năm học 2023-2024 - Sở GD và ĐT Hải Dương (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_thi_chon_hoc_sinh_gioi_cap_tinh_mon_toan_gdtx_lop_12_nam.pdf

Nội dung text: Đề thi chọn học sinh giỏi cấp tỉnh môn Toán (GDTX) Lớp 12 - Năm học 2023-2024 - Sở GD và ĐT Hải Dương (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI HẢI DƯƠNG LỚP 12 THPT CẤP TỈNH NĂM HỌC 2023 - 2024 Môn thi: TOÁN (GDTX) ĐỀ CHÍNH THỨC Ngày thi: 25/10/2023 Thời gian làm bài: 180 phút, không tính thời gian phát đề Đề thi gồm 05 câu, 01 trang Câu 1 (3,0 điểm) 1 Cho hàm số yx=32 −2 x +− 3 x 4. 3 a) Khảo sát sự biến thiên và vẽ đồ thị hàm số. b) Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng yx=8 − 1. Câu 2 (2,0 điểm) a) Giải phương trình:2sin3xxx+ cos2 + 2sin += 1 0. b) Giải phương trình: xx2 −4 += 3 23 − 5 x . Câu 3 (2,0 điểm) a) Lấy ngẫu nhiên 3 viên bi từ một hộp có 3 viên bi vàng, 4 viên bi đỏ, 5 viên bi xanh, 6 viên bi trắng. Tính xác suất để 3 viên bi lấy ra có ít nhất 2 màu. b) Trong mặt phẳng toạ độ Oxy cho điểm A(1;3). Viết phương trình đường tròn tâm A và đi qua B(-1;4). Câu 4 (2,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AB= a; BC = a 3. a) Tính thể tích khối chóp S.ABC theo a. b) Gọi M là trung điểm AC. Tính khoảng cách từ M đến mặt phẳng (SBC). Câu 5 (1,0 điểm) Một người đàn ông muốn xây bể bơi cho trẻ em có thể tích 18m3 và thiết kế bể là hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng. Tính độ sâu của bể để diện tích gạch lát đáy và thành bể nhỏ nhất. HẾT Thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ; Số báo danh: Chữ kí cán bộ coi thi số 1: Chữ kí cán bộ coi thi số 2:
  2. SỞ GIÁO DỤC VÀ ĐÀOTẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH HẢI DƯƠNG LỚP 12 THPT NĂM HỌC 2023 – 2024 Ngày thi: 25/10/2023 HƯỚNG DẪN CHẤM Môn thi: TOÁN (GDTX) (Hướng dẫn chấm gồm có 06 trang) Câu Đáp án Điểm 1 32 Cho hàm số yx= −2 x +− 3 x 4. 2,0 3 a) Khảo sát sự biến thiên và vẽ đồ thị hàm số. Tập xác định: D = 0,25 Sự biến thiên: = 2 x 1 yx′′=−+4 x 3; y =⇔ 0  x = 3  0,5 Hàm số đồng biến trên (−∞;1)và(3;+∞) . Hàm số nghịch biến trên(1; 3) . Cực trị: 8 Hàm số đạt cực đại tại xCD =1và giá trị cực đại yCD = − . 0,25 3 Hàm số đạt cực tiểu tại x = 3 và giá trị cực tiểu y = −4. 1 CT CT (2,0 Giới hạn và tiệm cận: điểm) limy = −∞ ; lim = +∞ . xx→−∞ →+∞ 0,25 Đồ thị hàm số không có đường tiệm cận. Bảng biến thiên: x −∞ 1 3 +∞ y′ + 0 − 0 + 8 − +∞ 0,25 3 y −∞ −4
  3. Đồ thị hàm số: 0,5 −10 Đồ thị hàm số nhận điểm M 2; làm tâm đối xứng. 3 b) Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song 1,0 song với đường thẳng yx=8 − 1. Gọi tiếp điểm là Mxy( ;.) Phương trình tiếp tuyến tại M có dạng o 0 0,25 y= fx′(0 ).( x −+ x 00 ) y . Vì tiếp tuyến song song với đường thẳng yx=81 − nên fx′()80 = hay x = −1 0,25 xx22−4 +=⇔ 38 xx − 4 −=⇔ 500 . 00 0 0  x0 = 5 −28 Với x = −1, ta có y = .Phương trình tiếp tuyến cần tìm là 0 0 3 28 yx=8( +− 1) 3 0,5 hay 24xy− 3 −= 4 0 8 8 Với x = 5, ta có y = . Phương trình tiếp tuyến cần tìm là yx=8( −+ 5) 0 0 3 3 hay 24xy−− 3 112 = 0 a) Giải phương trình 2sin3xxx+ cos2 + 2sin += 1 0. 1,0 2sin3x+ cos2 x + 2sin x += 1 0 ⇔ 2(sin3 xx + sin ) + (cos2 x + 1) = 0 ⇔2sin2.cosxxx +=⇔ cos2 0 4sin.cos xxx22 += cos 0 2 0,5 2 cosx = 0 ⇔cosxx (4 sin +=⇔ 1) 0  4sinx += 1 0 π TH1: cos2 x=⇔ 0 cos x =⇔= 0 x + kkπ ( ∈ ). 0,25 2
  4. −1 xk= arcsin+ 2π −1 4 TH2: 4sinxx+= 1 0 ⇔ sin = ⇔ (k∈ ). 4  −1 xk=−+ππarcsin 2  4 0,25 Vậy phương trình có 3 họ nghiệm là π −−11 x=+= kxπ; arcsin +k 2;ππ x =− arcsin +k 2π( k ∈ ) . 2 24  4 (2,0 b) Giải phương trình: xx2 −4 += 3 23 − 5 x . điểm) 1,0  23 23−≥ 5x 0 x ≤ (1) 2 − += − ⇔ ⇔ 0,25 xx4 3 23 5 x2 5 xx−4 += 3 23 − 5 x 2 xx+−20 = 0(2) Giải (2) ta có: xx22+−=⇔−+−=20 0 x 4 xx 5 20 0 0,5 x = 4 ⇔−(xx 4)( +=⇔ 5) 0  x = −5 Kết hợp với điều kiện (1) ta thấy xx=4; = − 5đều thoả mãn. Vậy tập nghiệm của phương trình là S ={4; − 5} . 0,25 a) Lấy ngẫu nhiên 3 viên bi từ một hộp có 3 viên bi vàng, 4 viên bi đỏ, 5 viên bi xanh, 6 viên bi trắng. Tính xác suất để 3 viên bi lấy ra có ít 1,0 nhất 2 màu. Phép thử là lấy ngẫu nhiên 3 viên bi từ một hộp có 18 viên bi nên 3 0,25 nC(Ω=) 18 =816. Gọi biến cố A: “3 viên bi lấy ra có ít nhất 2 màu”. 3 0,25 (2,0 ⇒biến cố A : “3 viên bi lấy ra có ít hơn 2 màu”. điểm) TH1: 3 viên bi lấy ra chỉ có màu vàng. TH1: 3 viên bi lấy ra chỉ có màu đỏ. TH1: 3 viên bi lấy ra chỉ có màu xanh. 0,25 TH1: 3 viên bi lấy ra chỉ có màu trắng. 3333 n(A) 35 ⇒ n(A) =+++= CCCC345635 ⇒=P(A) = n(Ω) 816
  5. 781 Vậy xác suất của biến cố A là PP(A)=−= 1 (A) . 0,25 816 b) Trong mặt phẳng toạ độ Oxy cho điểm A(1;3).Viết phương trình 1,0 đường tròn tâm A và đi qua B(− 1;4). Vì đường tròn có tâm A và đi qua B nên 22 0,5 R== AB( xBA − x )( +− y BA y ) = 5 Phương trình đường tròn có tâm A(1; 3) và bán kính R = 5 là 0,5 22 ()()xy−+−1 35 = Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại B; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết 1,0 AB= a; BC = a 3. a) Tính thể tích khối chóp S.ABC theo a. S M A C K H B 4 (2,0 Gọi H là trung điểm AB, vì tam giác SAB đều nên SH⊥ AB. điểm) Mà ()()SAB⊥ ABC ⇒⊥ SH (). ABC 0,5 a 3 ⇒=SH (Trung tuyến trong tam giác đều cạnh a). 2 11a2 3 Ta có S= AB. BC = a a 3 = 0,25 ABC 22 2 1 1aa23 33 a ⇒=V S. SH = =. 0,25 S. ABC3 ABC 32 2 4 b) Gọi M là trung điểm AC. Tính khoảng cách từ M đến mặt phẳng 1,0 (SBC). Xét tam giác ABC có H và M lần lượt là trung điểm của AB và AC 0,5
  6. ⇒HM là đường trung bình của tam giác ABC ⇒⇒HM// BC HM //( SBC )⇒=d( M;( SBC )) d( H ;( SBC )) Trong tam giác SAB kẻ KH⊥∈ SB( K SB ). Ta có SH⊥() ABC ⇒⊥ SH BC ; BC⊥ AB ⇒⊥BC HK. 0,25 Suy ra HK⊥ () SBC hay dM( ;( SBC )) = dH( ;( SBC )) = HK aa3 Dễ thấy HK= HB.sin HBK = .sin60 °= 24 0,25 a 3 Vậy d( M;( SBC )) = . 4 Một người đàn ông muốn xây bể bơi cho trẻ em có thể tích 18m3 và thiết kế bể là hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng. Tính độ 1,0 sâu của bể để diện tích gạch lát đáy và thành bể nhỏ nhất. Gọi chiều rộng của bể là xm()(x > 0). Suy ra chiều dài của bể là 3xm ( ). Gọi chiều sâu của bể là hm( ). 0,25 6 Vì thể tích của bể là 18m3 nên x.3 xh .= 18 ⇔= h . x2 Ta phải lát gạch ở đáy bể là 4 thành bể nên diện tích cần lát gạch là 6 48 0,25 S=+2 xh 2.3 xh + x .3 x = 8 x . +=+ 3 x22 3 x . xx2 5 48 (1,0 Xét hàm số Sx()= 3 x2 + trên (0;+∞ ). điểm) x 48 Có Sx′′()= 6 x − ; Sx () =⇔= 0 x 2. x2 Ta có bảng biến thiên x 0 2 +∞ 0,25 Sx'( ) - 0 + +∞ +∞ Sx() 36
  7. Từ bảng biến thiên ta thấy hàm số đạt giá trị nhỏ nhất của khi x = 2. 6 0,25 Vậy để diện tích gạch lát bể nhỏ nhất thì độ sâu của bể là hm= =1, 5( ). 22